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1. Introduction

In addition to introducing the path-breaking concept of sequential
equilibrium, Kreps and Wilson (1982) (henceforth KW) contains three
insightful theorems which derive the geometry of the set of sequential
equilibrium assessments, the finiteness of the set of sequential equilib-
rium outcomes, and the perfection of strict sequential equilibria. These
derivations depend upon Lemmas A1 and A2 in the KW appendix.

Section 3 of this paper notes that the KW proofs of these lemmas
contain a nontrivial fallacy. Section 4 repairs these proofs by means of
Streufert (2006b).

2. Definitions

This section recalls the relevant KW terminology and defines an
example which will be useful in Section 3.

This paragraph and Figure 2.1 define a game form [T,≺, A, α, H, ρ].
The set T of nodes contains the set X = {o, oL, oR, oL`, oLr, oR`}
of decision nodes, which in turn contains the set W = {o} of ini-
tial nodes. The set W is given the trivial distribution ρ = (ρ(o)) =
(1), and the set X is partitioned into the information sets h ∈ H =
{{o}, {oL, oR}, {oL`, oLr, oR`}}. Let H(x) denote the information set
h which contains x. Finally, let A = {L,R, `, r, δ, ε} be the set of ac-
tions a, let A(h) be the set of actions available from information set h,
and let α(x) be the last action taken to reach a non-initial node x.

A strategy profile is a function π:A→[0, 1] such that (∀h) Σa∈A(h)π(a)
= 1. A belief system is a function µ:X→[0, 1] such that (∀h) Σx∈hµ(x)
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Figure 2.1

= 1. An assessment is a strategy-belief pair (π, µ). As on KW page
872, let Ψ 0 consist of those strictly positive assessments for which

(∀x) µ(x) =
ρ◦p`(x)(x)·Π`(x)−1

k=0 π◦α◦pk(x)

Σx′∈H(x) ρ◦p`(x′)(x′)·Π`(x′)−1
k=0 π◦α◦pk(x′)

,

where pk(x) is the kth predecessor of node x, and `(x) is the number
of its predecessors. An assessment is consistent if it is the limit of
a sequence {πn, µn} in Ψ 0. For instance, in the example, the (π, µ)
defined in the second lines of

a L R ` r δ ε
πn(a) n−2

n−2+1
1

n−2+1
n−1

n−1+1
1

n−1+1
1
2

1
2

π(a) 0 1 0 1 1
2

1
2

and(1)

x o oL oR oL` oLr oR`
µn(x) 1 n−2

n−2+1
1

n−2+1
n−3

n−3+n−2+n−1
n−2

n−3+n−2+n−1
n−1

n−3+n−2+n−1

µ(x) 1 0 1 0 0 1

is consistent because the second line in each table is the limit of its first
line, and because the (πn, µn) defined in the first lines of the tables is
within Ψ 0 for any value of n.
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The following two paragraphs discuss two less familiar definitions.
Both concern subsets of X∪A. Note that KW page 880 calls any
subset of X∪A a basis.

As on KW page 880, a basis b is consistent if the set

Ψb = { consistent (π, µ) |(2)

(∀a) a∈b iff π(a)>0 and (∀x) x∈b iff µ(x)>0 }
is nonempty. For instance, in the example, the basis

b = {R, r, δ, ε, o, oR, oR`}(3)

is consistent because the (π, µ) defined in (1) belongs to Ψb.
As on KW Page 887, a basis b is labelled by a nonnegative-integer-

valued function K:A→Z+ if

(∀h)(∃a∈A(h)) K(a) = 0(4a)

(∀a) a ∈ b iff K(a) = 0(4b)

(∀x) x ∈ b iff x ∈ argmin{JK(x′)|x′∈H(x)} ,(4c)

where JK :X→Z+ is defined by

JK(x) = Σ`(x)−1
k=0 K◦α◦pk(x) .(5)



4 STREUFERT

For instance, in the example, the b defined in (3) is labelled by the K
defined in Figure 2.2. To see this, first note that the figure calculates
JK , then note that the figure also depicts b with arrows for actions and
dots for nodes, and finally, inspect each of the three conditions in (4).

3. A Fallacy

On KW page 888, Lemma A2’s proof draws upon Lemma A1. On
KW page 887, Lemma A1 appears as follows.

“Lemma A1: The basis b is consistent (Ψb is nonempty) if and only
if a b labelling exists.”

In other words, Lemma A1 states that a basis is consistent iff it can
be labelled. (The consistency of b is synonymous with the nonemptiness
of Ψb.)

Lemma A1’s proof appears on KW page 887. I find the argument
unconvincing. In particular, its second paragraph does not show how
to label an arbitrary consistent basis. The remainder of this section
examines this paragraph sentence-by-sentence (the fallacy occurs in the
very last sentence).

“Now suppose that b is a consistent basis.”
In Section 2’s example, the b defined at (3) is consistent. The proof

should tell us how to label this basis b with a function K.

“Since Ψb is nonempty, there exists a sequence {(µn, πn)} ⊆ Ψ ◦ with
the limit (µ, π) belonging to Ψb.”

In the example, the sequence {(µn, πn)} ⊆ Ψ 0 defined in the first
lines of (1) has the limit (µ, π) defined in the second lines of (1) and
this (µ, π) is an element of Ψb for the b defined at (3).

“Let M denote the finite set of all first degree, single term multino-
mials with coefficient one in the symbols a ∈ A.”

Thus M consists of 1, each action, each pair of actions, each triple of
actions, and so forth. In the example, elements of M include 1, R, and
R`, and accordingly, the elements of M will be useful in describing the
paths that reach nodes (1 describes the empty path taken to the initial
node). (The set M also happens to contain many other multinomials
like RL`r which do not correspond to paths that reach nodes, but these
extra multinomials don’t impose much of a burden.)
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“For m ∈ M , let mn represent m evaluated with a = πn(a).”
In the example, if m = R`, then the number mn = (R`)n is R`

evaluated with R = πn(R) and ` = πn(`), which reduces to πn(R)πn(`),
which by the definition (1) of {πn}n is 1

n−2+1
n−1

n−1+1 .

“Without loss of generality, we can assume that for every pair m and
m′ from M , the sequence mn/m′

n converges either to zero, to infinity,
or to some strictly positive number. (This is wlog because we can look
along a subsequence of {(µn, πn)} for which it is true.)”

In the example, consider m = R` and m′ = L`. Recall from the last
step that (R`)n is 1

n−2+1
n−1

n−1+1 . Similarly, (L`)n is n−2

n−2+1
n−1

n−1+1 . Thus
(R`)n/(L`)n is 1/n−2 = n2, which happens to converge to infinity. In
fact, all such ratio sequences in the example converge either to zero,
to infinity, or to some strictly positive number (in other words, the
subsequence argument is unnecessary in the example).

“Define m <̇ m′ if limnmn/m′
n = ∞; then <̇ is an asymmetric and

negatively transitive binary relation on M .”
In the example, R` <̇ L` because limn(R`)n/(L`)n = ∞ by the last

step. Many similar calculations reveal that the restriction of <̇ to
{1, L, R, L`, Lr,R`}2 is the set of pairs (m,m′) that receive a dot • in
the table

J(m′) m′

1 R` • •
2 Lr • • •
4 L` • • • • •
0 R
2 L • • •
0 1

1 L R L` Lr R` m
0 2 0 4 2 1 J(m)

(6)

(R` <̇ L` appears as the dot with R` on the horizontal axis and L`
on the vertical axis). (The binary relation <̇ is a much larger subset
of M2, but this is unimportant because the elements of M outside
of {1, L, R, L`, Lr, r`} do not correspond to paths that reach decision
nodes.)
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“Since M is finite there exists an integer valued function J on M
with m <̇ m′ if and only if J(m) < J(m′). We can pick J so that
J(m) = 0 for the <̇−least m—then J(m) ≥ 0 for all m.”

In the example, such a J appears in the last row (and first column)
of (6). The same J also appears in the boxes of Figure 3.1. (To be
precise, we are only concerning ourselves with the restriction of J to
{1, L, R, L`, Lr,R`}.)

“For each x ∈ X there is an associated mx ∈ M , namely mx =
Π`(x)−1

`=0 α(p`(x)).” (For x ∈ W , mx = 1.)
Each mx is the list of actions leading to x. In the example, moR` = R`

and {mx|x∈X} = {1, L, R, L`, Lr,R`}.

“Now for each a pick an arbitrary x ∈ H(a) such that J(mx) is min-
imal over x ∈ H(a) and define

K(a) = J(mx·a)− J(mx) .”(7)

(First an insignificant remark: I take H(a) to be the information set
from which the action a can be chosen. In other words, I take H(a) to
equal A−1(a), as defined on KW Page 867.)
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Consider the action a = ` in the example. It can be chosen from the
information set H(`) = {oL, oR}, and from the bottom row in (6) or
from the boxes in Figure 3.1, we have that J(L) = 2 and J(R) = 0.
Hence x = oR is, in the above words from KW evaluated at a = `,
“an arbitrary x ∈ H(`) such that J(mx) is minimal over x ∈ H(`)” (in
fact, it is the only such x). Hence (7) sets

K(`) = J(moR·`)− J(moR) = J(R`)− J(R) = 1 .(8)

Similarly consider the action a = L in the example. It can be chosen
from the information set H(L) = {o}. Hence x = o is (trivially) “an
arbitrary x ∈ H(L) such that J(mx) is minimal over x ∈ H(L).” Thus
(7) sets

K(L) = J(mo·L)− J(mo) = J(L)− J(1) = 2 .(9)

“We leave to the reader the relatively easy tasks of proving that
K(a) is well-defined (i.e., the choice of a J(mx)-minimal x ∈ H(a)
is irrelevant) and that K so defined is a b labelling (with, of course,
JK(x) = J(mx)).”

The equation JK(x) = J(mx) cannot be derived. Consider the ex-
ample. There JK(oL`) = K(L)+K(`) = 2+1 = 3 by (5), (8), and (9).
Yet J(moL`) = J(L`) = 4 by the definition of J in the last row of (6).

The difficulty lies in the choice of the function J . I deliberately chose
J(L`) = 4. Had I alternatively chosen J(L`) = 3, there would have
been no problem with this example at the last stage of the proof.

However, making a judicious choice of J is a nontrivial problem. Not
any representation of the binary relation <̇ will do. Rather, it has to
be additive across actions. Finding that additive representation lies at
the heart of Streufert (2006a) and Streufert (2006b). A theorem from
the second of these papers is employed in the next section to prove the
KW lemmas.

4. Proofs of KW Lemmas A1 and A2

4.1. Preliminary Remarks
For any nonpositive-integer-valued function ε:A→Z− and any node

x, define the set

Hε(x) = argmax{ Σ`(x′)−1
k=0 ε◦α◦pk(x′) | x′∈H(x) } .
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Corollary 4.1 is equivalent to Streufert (2006b, Corollary 2.2). Note
that the ε here differs from the e in Streufert (2006b) to the extent
that ε cannot assume positive values.

Corollary 4.1. In any game form [T,≺, A, α, ρ, H], an assessment
(π, µ) is consistent iff there exists ξ:A→(0,∞) and ε:A→Z− such that

(∀a) π(a) =
(

ξ(a) if ε(a) = 0
0 if ε(a) < 0

)

and(10a)

(∀x) µ(x) =







ρ◦p`(x)(x)·Π`(x)−1
k=0 ξ◦α◦pk(x)

Σx′∈Hε(x)ρ◦p`(x′)·Π`(x′)−1
k=0 ξ◦α◦pk(x′)

if x∈Hε(x)

0 if x 6∈Hε(x)





 .

(10b)

Proof. Corollary 4.1 and Streufert (2006b, Corollary 2.2) are equiva-
lent after (ξ, ε) has been identified with (c, e). Here the nonnegativity
in ε is implicit, there the nonnegativity of e appears explicitly just
before the corollary’s two equations. 2

The next three lemmas are very simple, but they will each be em-
ployed several times in future proofs. To get oriented, note that any
two of (11), (12), and (14) imply the third.

Lemma 4.2. If (π, µ) and (ξ, ε) satisfy (10), then

(∀a) π(a) > 0 iff ε(a) = 0 and(11a)

(∀x) µ(x) > 0 iff x ∈ Hε(x) .(11b)

Proof. Obvious. 2

Lemma 4.3. (π, µ) ∈ Ψb iff (π, µ) is consistent,

(∀a) a ∈ b iff π(x) > 0 , and(12a)

(∀x) x ∈ b iff µ(x) > 0 .(12b)

Proof. This follows from the definition (2) of Ψb. 2

Lemma 4.4. A basis b can be labelled iff there is an ε:A→Z− such
that

(∀h)(∃a∈A(h)) ε(a) = 0 ,(13)

(∀a) a ∈ b iff ε(a) = 0 , and(14a)

(∀x) x ∈ b iff x ∈ Hε(x) .(14b)

Proof. (4) is equivalent to the combination of (13) and (14) after JK

has been substituted out, and K and −ε have been identified. 2
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4.2. Lemma A1

Lemma 4.5 (KW Lemma A1). A basis is consistent iff it can be
labelled.

Proof. Suppose b is consistent. Then Ψb 6= ∅, and thus by Lemma 4.3
there is a consistent assessment (π, µ) satisfying (12). Because (π, µ) is
consistent, Corollary 4.1 yields (ξ, ε) satisfying (10), which by Lemma
4.2 yields (11). (12) and (11) together yield (14). (10a) and the well-
definition of π yield (13). Hence, by Lemma 4.4, b can be labelled.

Conversely, suppose that b can be labelled. Then by Lemma 4.4
there exists some ε which satisfies (13) and (14). Then define ξ by

ξ(a) = 1/|{ a′∈A(H(a)) | ε(a′)=0 }| .

Because of (13) and the normalization in the definition of ξ, we can
construct π and µ to satisfy (10). Then by Corollary 4.1, (π, µ) is
consistent. Further, (10) yields (11) by Lemma 4.2, and then, (14)
and (11) yield (12). Hence, by Lemma 4.3, (π, µ) ∈ Ψb. Hence b is
consistent. 2

4.3. Lemma A2
As on KW page 888, define

Ξb = { ξ:A→(0,∞) | (∀h) Σa∈b∩A(h)ξ(a) = 1 } ,

let πb map ξ ∈ Ξb to

πb(ξ)(a) =
(

ξ(a) if a ∈ b
0 if a 6∈ b

)

,(15a)

and let µb map ξ ∈ Ξb to

µb(ξ)(x) =









ρ◦p`(x)(x)·Π`(x)−1
k=0 ξ◦α◦pk(x)

Σx′∈b∩H(x)ρ◦p`(x′)·Π`(x′)−1
k=0 ξ◦α◦pk(x′)

if x ∈ b

0 if x 6∈ b









(15b)

(the KW multinomials mx have been substituted out, and the restric-
tion (∀w) ρ(w) = 1/|W | arbitrarily imposed at the start of KW Section
A.1 has been relaxed).

Lemma 4.6 (KW Lemma A2). For any consistent b, Ψb is the image
of Ξb under the mapping (πb, µb).
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Proof. Take any assessment (π, µ) in Ψb. Thus by Lemma 4.3, we
have (12). Further, since (π, µ) is consistent, Corollary 4.1 yields the
existence of (ξ, ε) which satisfy (10), which by Lemma 4.2 yields (11).
Then (12) and (11) imply (14). We now assemble three facts. [a]
π = πb(ξ) by (10a), (14a), and definition (15a). [b] µ = µb(ξ) by (10b),
(14b), and definition (15b), and by the fact that (∀x) b∩H(x) = Hε(x)
by (14b). [c] ξ ∈ Ξb by (10a) and the well-definition of π. By these
three facts, (π, µ) is in the image of Ξb under (πb, µb).

Conversely, take any consistent b and any ξ ∈ Ξb. By Lemmas 4.5
and 4.4, there is some ε which satisfies (14). Then, πb(ξ) satisfies (10a)
by (15a) and (14a). Further, (14b) yields (∀x) b∩H(x) = Hε(x), and
thus, µb(ξ) satisfies (10b) by (15b) and (14b). Since (πb(ξ), µb(ξ)) satis-
fies (10) by the last two sentences, Corollary 4.1 yields that (πb(ξ), µb(ξ))
is consistent. Therefore, since (15) yields that (πb(ξ), µb(ξ)) satisfies
(12), Lemma 4.3 yields (πb(ξ), µb(ξ)) ∈ Ψb. 2
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