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Abstract. This paper derives two characterizations of the Kreps-
Wilson concept of consistent beliefs. In the first, beliefs are shown
to be consistent iff they can be constructed from the elements of
monomial vectors which converge to the strategies. In the second,
beliefs are shown to be consistent iff they can be induced by a
product dispersion whose marginal dispersions induce the strate-
gies. The first characterization is simpler than the definition in
Kreps and Wilson (1982), and the second seems more fundamen-
tal in the sense that it is built on an underlying theory of relative
probability.

1. Introduction

This paper will draw extensively from Kreps and Wilson (1982)
(henceforth KW). KW’s definition of sequential equilibrium includes
the definition of consistency, and that definition says that beliefs and
strategies are consistent with one another iff they are the limit of a
sequence of strictly positive beliefs and strategies which are consistent
with one another via Bayes Rule. This paper provides two characteri-
zations of this important definition.

The first characterization (Theorem 2.1) says that beliefs and strate-
gies are consistent iff there are monomial vectors such that (a) the
strategy at each information set is the limit of the monomial vector
at that information set, and (b) the belief at each information set is
found by calculating the product of the monomials along the paths
leading to each of the nodes in the information set. This simplifies
the KW definition because each action is assigned a monomial (i.e., a
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2 STREUFERT

coefficient and an exponent) rather than a sequence (which is infinite-
dimensional). Streufert (2006b) uses the theorem to repair a nontrivial
fallacy in KW’s proofs, and Subsection 2.2 discusses how it extends a
result in Perea y Monsuwe, Jansen, and Peters (1997).

The second characterization (Theorem 3.1) is very disaggregated. It
concerns the Cartesian product of the action sets across the many in-
formation sets, together with an additional dimension for the initial
nodes. The theorem says that beliefs and strategies are consistent iff
there is a product dispersion over this Cartesian product such that (a1)
the exogenous distribution across the initial nodes is induced by the
corresponding marginal of the product, (a2) the strategy at each infor-
mation set is induced by the corresponding marginal of the product,
and (b) the belief at each information set is induced by the restriction of
the product to those elements of the Cartesian product that correspond
to the information set. In my eyes, this construction is fundamental:
it is unaffected by arbitrary choices of sequences or monomials, and is
instead based upon a theory of relative probability (Streufert (2006a)).
Subsection 3.5 discusses how the construction stems from Kohlberg and
Reny (1997) and how it relates to Fudenberg and Tirole (1991).

These two characterizations are derived simultaneously (Theorem
4.1). This is surprising because the two characterizations appear to
depart from the KW definition in opposite directions: the first uses
monomial vectors to reduce complexity while the second uses large
product dispersions that seem to increase complexity. Yet, the two
are directly linked via an underlying result in Streufert (2006a) which
shows that a dispersion can be represented by a product of monomial
vectors iff it is a product dispersion.

2. Characterization by Monomials

2.1. Basic Definitions
Section 2 uses KW notation. This subsection recapitulates certain

KW definitions and introduces an example which will be used through-
out the paper.

This paragraph and Figure 2.1 define a game form [T,≺, A, α, H, ρ].
The set T of nodes contains the set X = {o, oL, oLd, oR} of decision
nodes, which in turn contains the set W = {o} of initial nodes. The set
W is given the trivial distribution ρ = (ρ(o)) = (1), and the set X is
partitioned by the information sets h ∈ H = {{o}, {oL}, {oLd, oR}}.
Let H(x) denote the information set h which contains x. Finally, let
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Figure 2.1

A = {L,D,R, `, d, f, g} be the set of actions a, let A(h) be the set of
actions available from information set h, and let α(x) be the last action
taken to reach a non-initial node x.

A strategy profile is a function π:A→[0, 1] such that (∀h) Σa∈A(h)π(a)
= 1 (we assume perfect recall and consider only behavioural strategies).
A belief system is a function µ:X→[0, 1] such that (∀h) Σx∈hµ(x) = 1.
An assessment is a pair (π, µ). Let Ψ 0 consist of those strictly positive
assessments which satisfy

(∀x) µ(x) =
ρ◦p`(x)(x)·Π`(x)−1

k=0 π◦α◦pk(x)

Σx′∈H(x) ρ◦p`(x′)(x′)·Π`(x′)−1
k=0 π◦α◦pk(x′)

,(1)

where pk(x) is the kth predecessor of node x, and `(x) is the number
of its predecessors. An assessment (µ, π) is said to be consistent if it is
the limit of a sequence 〈(µn, πn)〉n in Ψ 0. For instance, in the example,
the (π, µ) defined by the second lines of

L D R ` d f g
πn(a) n−1

1+3n−1
2n−1

1+3n−1
1

1+3n−1
1

1+6n−2
6n−2

1+6n−2
1
2

1
2

π(a) 0 0 1 1 0 1
2

1
2

(2)
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and
o oL oLd oD

µn(x) 1 1 6n−3

2n−1+6n−3
2n−1

2n−1+6n−3

µ(x) 1 1 0 1

(3)

is consistent because the second line in each table is the limit of its first
line, and because the (πn, µn) defined in the first line of both tables is
within Ψ 0 for any value of n.

2.2. Theorem
Theorem 2.1 characterizes consistency by means of two functions

defined over the set A of actions. The function e assigns an integer
“exponent” to each action, and the function c assigns a positive real
“coefficient” to each action. This is simpler than the KW definition
because two functions of A are simpler than a sequence of functions of
A.

Theorem 2.1. In any game form [T,≺, A, α, ρ, H], an assessment
(µ, π) is consistent iff there exists c:A→(0,∞) and e:A→Z such that

(∀a) π(a) = limn→∞ c(a)ne(a) , and

(∀x) µ(x) = limn→∞
ρ◦p`(x)·Π`(x)−1

k=0 c◦α◦pk(x)ne◦α◦pk(x)

Σx′∈H(x) ρ◦`(x′)·Π`(x′)−1
k=0 c◦α◦pk(x′)ne◦α◦pk(x′)

.

Proof. Theorem 4.1(b⇔c) by means of the notational modifications
around (7) and (8). 2

Theorem 2.1 is equivalent to a reformulation of Lemmas A1 and
A2 on KW pages 887 and 888. Nonetheless, Theorem 2.1 is valuable
because it repairs a nontrivial fallacy in KW’s proof of these lemmas
(details in Streufert (2006b)), and because these lemmas in turn provide
the logical basis for KW’s three theorems about the geometry of the
set of sequential equilibrium assessments, the finiteness of the set of
sequential equilibrium outcomes, and the perfection of strict sequential
equilibria. The paper by Perea y Monsuwe, Jansen, and Peters (1997)
appears to recognize neither its close relation to the KW lemmas nor
the fallacy in the KW proof, and its Theorem 3.1 is weaker than the
KW lemmas to the extent that it derives the analog of real but not
necessarily integer exponents (details in Appendix A).

The functions c and e can be together regarded as a single function
which assigns a monomial c(a)ne(a) to each action a. For instance, the
first line in the following table defines a monomial at each action in the
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Figure 2.2

example

a L D R ` d f g
c(a)ne(a) n−1 2n−1 1 1 6n−2 .5 .5

π(a) 0 0 1 1 0 .5 .5

.(4)

The second line is then the strategy derived via the Theorem 2.1’s first
equation.

The theorem’s second equation asks one to calculate a product at
each node. Fortunately, this product is just the product of the mono-
mials along the path leading to the node. For instance, in Figure 2.2,
the unboxed monomial at each action is taken from the first line of (4)
and the boxed monomial at each node is the product of the unboxed
monomials above it. These boxed monomials appear in the first line of

x o oL oLd oD
ρ◦p`(x)(x)·Π`(x)−1

k=0 c◦α◦pk(x)ne◦α◦pk(x) 1 n−1 6n−3 2n−1

µ(x) 1 1 0 1

.(5)

The second line is then the belief derived via the theorem’s second
equation.
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By Theorem 2.1, the assessment (π, µ) defined in (4) and (5) is con-
sistent. This is rather uninteresting because (4) and (5) are very similar
to (2) and (3). In fact, it is always the case that the monomials defined
by c and e determine a special kind of sequence 〈πn〉n by means of

(∀h)(∀a∈A(h)) πn(a) =
c(a)ne(a)

Σa′∈A(h)c(a′)ne(a′) .

However, the converse provided by Theorem 2.1 is valuable. It shows
that any consistent assessment can be supported with this special kind
of sequence.

The following corollary is equivalent to Theorem 2.1. In both the
theorem and the corollary, the first equation uses the exponents to
determine the support of the strategy at each h and then uses the coef-
ficients to determine the probabilities over that support. Similarly, the
second equation uses the exponents to determine the support of the
belief at each h and then uses the coefficients to determine the prob-
abilities over that support. The corollary’s formulation makes these
observations more apparent.

Corollary 2.2. In any game form [T,≺, A, α, ρ, H], an assessment
(µ, π) is consistent iff there exists c:A→(0,∞) and e:A→Z such that
(∀a) e(a) ≤ 0,

(∀a) π(a) =
(

c(a) if e(a) = 0
0 if e(a) < 0

)

, and

(∀x) µ(x) =







ρ◦p`(x)(x)·Π`(x)−1
k=0 c◦α◦pk(x)

Σx′∈He(x) ρ◦p`(x′)(x′)·Π`(x)−1
k=0 c◦α◦pk(x′)

if x∈He(x)

0 if x6∈He(x)







where He(x) = argmax{Σ`(x′)−1
k=0 e◦α◦pk(x′) |x′∈H(x) }.

Proof. The first equation of Theorem 2.1 is equivalent to the nonpos-
itivity of e and the first equation of Corollary 2.2. The second equations
of the two results are equivalent. 2

3. Characterization by Product Dispersions

3.1. Modified Basic Notation
The remainder of this paper will use the modified notation that is

introduced in Table 3.1. The big picture is that Theorems 3.1 and 4.1
are best understood in terms of vectors of the form [xi] and matrices
of the form [xij].
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KW and Sections
Section 2 3 and 4

information set h h
a node in h xh

the set of decision nodes X
a decision node x
a belief at h µ|h [µxh ]
a belief system µ ([µxh ])h

the set of actions at h A(h) Ah

an action at h ah

the set of actions A
an action a
a strategy at h π|A(h) [πah ]
a strategy profile π ([πah ])h

Table 3.1

In addition, we will frequently need to derive a distribution from
a vector of functions. Specifically, let Z be a finite set, let [νz] be a
distribution over Z, and let [fz(n)] be a vector over Z of functions fz(n)
of n. Then say that [νz] is induced by [fz(n)] if

(∀z) νz = limn→∞
fz(n)

Σz′ fz′(n)
.(6)

To exercise this new notation and terminology, note that the assess-
ment ([πah ])h, ([µxh ])h is consistent (as defined near (1)) iff there exists
a profile (〈[πn

ah
]〉n)h of full-support distribution sequences 〈[πn

ah
]〉n such

that

(∀h) [πah ] = limn→∞[πn
ah

] and(7)

(∀h) [µxh ] is induced by [ρp`(xh)·Π`(x)−1
k=0 πn

α◦pk(xh)] ,

and that by Theorem 1, this is equivalent to the existence of a profile
([cahn

eah ])h of monomial vectors [cahn
eah ] such that

(∀h) [πah ] = limn→∞[cahn
eah ] and(8)

(∀h) [µxh ] is induced by [ρp`(xh)·Π`(x)−1
k=0 cα◦pk(xh)neα◦pk(xh) ] .

3.2. Dispersions
Streufert (2005, Section 2) introduces dispersions. Here is a brief

synopsis. Consider any finite set Z. A table over Z is a [qz/z′ ] ∈ [0,∞]Z2
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which lists a relative probability qz/z′ ∈ [0,∞] for every pair of elements
z and z′ from Z. A dispersion over Z is a table [qz/z′ ] that satisfies
(∀z) qz/z = 1 and

(∀z, z′, z′′) qz/z′′ ∈ �(qz/z′ , qz′/z′′) ,

in which � is a set-valued function assigning subsets of [0,∞] to pairs
(u, v) ∈ [0,∞]2 according to the rule

�(u, v) =
(

[0,∞] if (u, v) equals (0,∞) or (∞, 0)
{uv} otherwise

)

.

A dispersion [qz/z′ ] induces the distribution [νz] satisfying

(∀z) νz =
qz/z∗

Σz′∈Z qz′/z∗
,(9)

for some z∗∈Z satisfying (∀z′∈Z) qz′/z∗ < ∞. In other words a dis-
persion induces the distribution that is derived by normalizing any
“row” of the dispersion that contains only finite relative probabilities.
Streufert (2005, Remark 2.1) shows that every dispersion induces ex-
actly one distribution.

3.3. Products
Streufert (2005, Section 3) and Streufert (2006a, Section 2) introduce

products over a nonempty finite collection (Zi)`
i=1 of nonempty finite

sets Zi. A product over (Zi)`
i=1 is table over the Cartesian product

Z = Π`
i=1Zi which belongs to the set ∆· (Zi)`

i=1 defined by

∆· (Zi)`
i=1 = { [qz/z′ ] ∈ [0,∞]Z

2 |(10)

(∀m)(∀σ)(∀(zj)m
j=0) 1 ∈ �(qzσ,j/zj )m

j=0 } ,

in which m is a nonnegative integer, σ is a vector (σ1, σ2, ... σ`) of
permutations of {0, 1, ... m}, each zj is a vector in the Cartesian product
Z = Π`

i=1Zi, each zσ,j is the vector in Z defined by

zσ,j = (zσ1(j)
1 , zσ2(j)

2 , ... zσ`(j)
` ) ,

and � is the function which assigns a subset of [0,∞] to every (uj)m
j=0

in [0,∞]1+m according to the rule

�(uj)m
j=0 =

(

[0,∞] if (∃j)uj=0 and (∃j)uj=∞
{Πm

j=0u
j} otherwise

)

({1} is assigned to the empty vector). Streufert (2006a, Remark 3.2)
observes that every product is a dispersion (and hence “product” and
“product dispersion” are synonymous.)
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The marginals of a product [qz/z′ ] over (Zi)`
i=1 are the ` dispersions

([qzi/z′i ])
`
i=1 which satisfy

(∀z, z′) qz/z′ ∈ �(qzi/z′i)
`
i=1 .

Streufert (2006a, Remark 4.1) shows that every product has a unique
vector of marginals, and that for any dimension i, the marginal [qzi/z′i ]
satisfies

[qzi/z′i ] = [qziz?
−i/z′iz

?
−i

](11)

for any z?
−i ∈ Πj 6=iZj. Note that marginals are defined to be dispersions

(and hence “marginal” and “marginal dispersion” are synonymous).
The more leisurely discussion of producthood in Streufert (2005, Sec-

tion 3) makes two general observations about producthood which might
bear repeating here. First, a product is defined to be a table over a
Cartesian product in which cancellations can occur in its different di-
mensions independently. In this regard, product dispersions are like
product distributions. Second, many different products can share the
same vector of marginals. In other words, a vector of marginal disper-
sions is ambiguous. In this regard, product dispersions are different
from product distributions (in my own experience, this is difficult to
remember).

3.4. Informal Introduction to Theorem
Streufert (2005, Sections 4 and 5) introduces this paper’s second

characterization of consistency in a simpler setting in which the only
nontrivial information set follows after two simultaneous moves. Ac-
cordingly, all but the bravest souls might like to get comfortable with
statement (b) in that paper’s Theorem 5.1 before venturing further.

In the present setting, consider the example and contemplate the
Cartesian product

W×ΠhAh = {o}×{L,D,R}×{`, d}×{f, g} =(12)

{ oL`g, oLdg, oD`g, oDdg, oR`g, oRdg,
oL f̀, oLdf, oD f̀, oDdf, oR f̀, oRdf }

The following theorem is concerned with all the relative probabilities
among the 12 elements of this set. Hence it is concerned with a 144-
dimensional dispersion. One of these creatures is lurking in Figure 3.2.
Notice that its rows and columns are labelled with the elements of the
Cartesian product (12). For instance, Figure 3.2 says that qoD`f/oL`g =
2.
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oRdg 0 0 0 0 0 0 0 0 ∞ ∞ 1 1
oRdf 0 0 0 0 0 0 0 0 ∞ ∞ 1 1
oR`g 0 0 0 0 0 0 0 0 1 1 0 0
oR`f 0 0 0 0 0 0 0 0 1 1 0 0
oDdg ∞ ∞ .5 .5 ∞ ∞ 1 1 ∞ ∞ ∞ ∞
oDdf ∞ ∞ .5 .5 ∞ ∞ 1 1 ∞ ∞ ∞ ∞
oD`g .5 .5 0 0 1 1 0 0 ∞ ∞ ∞ ∞
oD`f .5 .5 0 0 1 1 0 0 ∞ ∞ ∞ ∞
oLdg ∞ ∞ 1 1 ∞ ∞ 2 2 ∞ ∞ ∞ ∞
oLdf ∞ ∞ 1 1 ∞ ∞ 2 2 ∞ ∞ ∞ ∞
oL`g 1 1 0 0 2 2 0 0 ∞ ∞ ∞ ∞
oL`f 1 1 0 0 2 2 0 0 ∞ ∞ ∞ ∞

oL`f oL`g oLdf oLdg oD`f oD`g oDdf oDdg oR`f oR`g oRdf oRdg

Table 3.2

The “third” player’s strategy can be derived from this dispersion.
In particular, the “third” player chooses at the information set h =
{oLd, oD} among the options Ah = {f, g}. By (11), the marginal of
the dispersion with respect to Ah = {f, g} is

[qoL`ah/oL`a′h
] =

[

qoL`f/oL`g qoL`g/oL`g

qoL`f/oL`f qoL`g/oL`f

]

=
[

1 1
1 1

]

,

and this marginal induces the strategy (πf , πg) = (.5, .5). Note that
this 2×2 marginal appears in the bottom-left corner of Figure 3.2.

There was, by the way, nothing special about using oL` to find the
marginal with respect to {f, g}. We might have used oLd, oD`, oDd,
oR`, or oRd. The five corresponding 2×2 tables can be found along
the main diagonal in Figure 3.2. As expected from (11), they are all
equal.

The “second” player’s strategy can also be derived from this disper-
sion. In particular, the “second” player chooses at the information set
h = {oL} among the options Ah = {`, d}. By (11), the marginal with
respect to {`, d} is

[qoLahf/oLa′hf ] =
[

qoL`f/oLdf qoLdf/oLdf

qoL`f/oL`f qoLdf/oL`f

]

=
[

∞ 1
1 0

]

,
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and this induces the strategy (π`, πd) = (1, 0). Note that this 2×2
marginal appears in the four corners of the 3×3 table in the bottom-
left corner of Figure 3.2 (there are five equal 2×2 tables corresponding
to oL g, oD f , oD g, oR f , and oR g).

Finally, the “first” player’s strategy can also be derived from the
dispersion. In particular, the “first” player chooses at the information
set h = {o} among the options Ah = {L,D, R}. By (11), the marginal
with respect to {L,D, R} is

[qoah`f/oa′h`f ] =





qoL`f/oR`f qoD`f/oR`f qoR`f/oR`f

qoL`f/oD`f qoD`f/oD`f qoR`f/oD`f

qoL`f/oL`f qoD`f/oL`f qoR`f/oL`f



 =





0 0 1
.5 1 ∞
1 2 ∞



 ,

which induces the strategy (πL, πD, πR) = (0, 0, 1). To find this 3×3
marginal within Figure 3.2, note the nine rectangles partitioning the
table and take the bottom left element from each of them (there are
three equal 3×3 tables corresponding to o `g, o df , and o dg).

It remains to find the belief at the third player’s information set
h = {oLd, oD}. We need two sets. The first is

SoLd = { w(aη)η | w = p`(oLd)(oLd) and

(∀`∈{0, 1, ... `(oLd)−1} aH◦p`+1(oLd) = α◦p`(oLd) }
= { w(aη)η | w = p2(oLd),

aH◦p2(oLd) = α◦p1(oLd), aH◦p1(oLd) = α◦p0(oLd) }
= { w(aη)η | w = o, aH(o) = α(oL), aH(oL) = α(oLd) }
= { w(aη)η | w = o, a{o} = L, a{oL} = d }
= {oLdf, oLdg} ,

which is the subset of the Cartesian product {o}×{L,D, R}×{`, d}×
{f, g} which is “compatible” with the node oLd. Similarly, the subset
of the Cartesian product which is “compatible” with oD is

SoD = { w(aη)η | w = p`(oD)(oD) and

(∀`∈{0, 1, ... `(oD)−1} aH◦p`+1(oD) = α◦p`(oD) }
= { w(aη)η | w = p1(oD), aH◦p1(oD) = α◦p0(oD) }
= { w(aη)η | w = o, aH(o) = α(oD) }
= { w(aη)η | w = o, a{o} = D }
= {oD`f, oD`g, oDdf, oDdg} .
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The union of these two sets,

SoLD∪SoD = {oLdf, oLdg, oD`f, oD`g, oDdf, oDdg} ,

is comprised of those elements of the Cartesian product that might have
something to do with the belief at the information set h = {oLd, oD}.

Accordingly, consider the restriction of Figure 3.2 to (SoLd∪SoD)2.
This restriction is the 6×6 boxed table within Figure 3.2. This restric-
tion induces the following distribution over SoLd∪SoD

SoLd SoD

w(aη)η oLdf oLdg oD`f oD`g oDdf oDdg
νw(aη)η |SoLd∪SoD 0 0 .5 .5 0 0

(13)

and this distribution implies that the belief over h = {oLd, oD} is

( νSoLd|SoLd∪SoD , νSoD|SoLd∪SoD ) = (0, 1) .

To summarize, the product dispersion in Figure 3.2 determines all the
strategies and all the beliefs. In particular, its marginals determine the
strategies and its restrictions determine the beliefs. Producthood plays
an essential role in these calculations by assuring that the marginals
are well-defined via (11).

Streufert (2005, Section 5.2) summarizes an example which illus-
trates that a strategy does not uniquely determine a marginal, and
further, that a profile of marginals does not uniquely determine a prod-
uct. These two sources of ambiguity are the reasons that one strategy
profile can be consistent with many belief systems.

3.5. Formal Theorem
Consider any information set h. At any xh, define

Sxh = { w(aη)η ∈ W×ΠηAη | w = p`(xh)(xh) and(14)

(∀`∈{0, 1, ... `(xh)−1}) aH◦p`+1(xh) = α◦p`(xh) } .

Then let [qw(aη)η/w′(a′η)η ]|∪x′h
Sx′h

denote the restriction of the dispersion
[qw(aη)η/w′(a′η)η ] to ∪x′hSx′h . This restriction induces a conditional distri-
bution over ∪x′hSx′h

which we will denote [νw(aη)η |∪x′h
Sx′h

]. This condi-
tional distribution then determines the probability of each Sxh relative
to ∪x′h

Sx′h
by

(∀xh) νSxh |∪x′h
Sx′h

= Σw(aη)η∈Sxh
νw(aη)η |∪x′h

Sx′h
(15)

(the assumption of perfect recall guarantees that (Sxh)xh partitions
∪x′hSx′h

).
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Theorem 3.1. In any game form [T,≺, A, α, ρ, H], an assessment
([πah ])h, ([µxh ])h is consistent iff there exists a product [qw(ah)h/w′(a′h)h ]
over (W, (Ah)h) such that

(ρ, ([πah ])h) is induced by the marginals of [qw(ah)h/w′(a′h)h ] and

(∀h) [µxh ] is the [νSxh |∪x′h
Sx′h

] induced by [qw(ah)h/w′(a′h)h ]|∪x′h
Sx′h

.

Proof. Theorem 4.1(c⇔d). 2

The inspiration for this characterization can be traced to Kohlberg
and Reny (1997). In particular, a reformulation of its Theorem 2.10 is
equivalent to Streufert (2006a, Remark 6.3) (further discussion appears
there).

The above characterization is also related to an idea pursued by
Fudenberg and Tirole (1991, Section 6). That paper considers the
equivalent of a dispersion on the set of terminal nodes. This differs
from the above characterization in two ways. First, it is more aggre-
gated: the set of terminal nodes is relatively small and expands to the
Cartesian product W×ΠhAh only in simultaneous-move games. Sec-
ond, and much more importantly, dispersionhood is far weaker than
producthood, and producthood with its many cancellation laws corre-
sponds to the KW definition of consistency (this is the underlying issue
identified by Kohlberg and Reny (1997) in their note 17).

I would suggest that product dispersions provide a comparatively
fundamental way of understanding consistency. Unlike the KW defini-
tion of consistency, it is uncluttered with arbitrary choices of sequences.
And, unlike Theorem 1’s characterization, it is uncluttered with arbi-
trary choices of coefficients and exponents.

4. General Theorem

4.1. A Third Characterization
Statement (a) in Theorem 4.1 provides a third characterization of

consistency. It is close to (b), which was discussed in Section 2 as the
first of this paper’s two characterizations. In fact, (b) is derived from
a convenient “normalization” of (a). Although relatively unimportant,
(a) does have some independent value as a sufficient condition for con-
sistency when one would rather not be bothered with the normalization
inherent in (b).
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Statement (a) is also a focal point of the Theorem 4.1’s underlying
logic. At first glance, it is useful to notice that the theorem’s four equiv-
alent statements are arranged so that all three “downhill” implications
are much easier than getting from (d) all the way back to (a). This dif-
ficult step is achieved via Streufert (2006a), whose Theorem 5.1 proves
that any product dispersion (such as [qw(ah)h/w′(a′h)h ]) can be represented
by some product of monomial vectors (such as [cwnewΠhcahn

eah ]). Once
(a) has been attained, it is comparatively easy to find a “normaliza-
tion” of the monomials which yields the relatively simple expressions of
(b). Then, another sort of “normalization” converts these expressions
into the strategy sequences defining consistency in (c).

Since the reader is probably familiar with the definition of consis-
tency in (c), the proof starts at (c) and immediately proceeds to derive
(d)’s underlying product dispersion from the definition of consistency.
It then makes the leap to (a), drops to (b), and drops back to (c).

Theorem 4.1. Let [T,≺, A, α, ρ,H] be a game form. Then the fol-
lowing four statements are equivalent for any assessment ([πah ], [µxh ])h.
(a) There exists a ([cahn

eah ])h such that

(∀h) [πah ] is induced by [cahn
eah ] and

(∀h) [µxh ] is induced by [Σw(aη)η∈Sxh
ρwΠηcaηn

eaη ] .

(b) There exists a ([cahn
eah ])h such that

(∀h) [πah ] = limn→∞[cahn
eah ] and

(∀h) [µxh ] is induced by [ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh) ] .

(c) (Consistency in KW) There exists a (〈[πn
ah

]〉n)h such that

(∀h) [πah ] = limn→∞[πn
ah

] and

(∀h) [µxh ] is induced by [ρp`(xh)(xh)·Π`(xh)−1
k=0 πn

α◦pk(xh)] .

(d) There exists a product [qw(ah)h/w′(a′h)h ] over (W, (Ah)h) such that

(ρ, ([πah ])h) is induced by the marginals of [qw(ah)h/w′(a′h)h ] and

(∀h) [µxh ] is the [νSxh |∪x′h
Sx′h

] induced by [qw(ah)h/w′(a′h)h ]|(∪x′h
Sx′h

)2 .

The word “induce” is littered throughout the theorem. In (a), (b),
and (c), a distribution is “induced” by a vector of functions of n ac-
cording to definition (6). In (d), a distribution is “induced” by a finite
row in a dispersion according to definitions (9) and (15).
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4.2. Proof of Theorem 4.1(c⇒d)
The substantive matter here is that the sequences defining consis-

tency in (c) imply the cancellation laws defining producthood in (d).
This matter is addressed in the first two paragraphs of Proof 4.4 below.

The remainder of the proof is concerned with translating from the
game-tree notation of (c) to the product notation of (d). This trans-
lation is facilitated by a definition and two lemmas. A table [qz/z′ ] is
said to be approximated by a sequence 〈[βn

z ]〉n of positive vectors if

(∀z, z′) qz/z′ = limn→∞βn
z /βn

z′ .(16)

Because this concept concerns ratios, the positive vectors [βn
z ] need not

be normalized as full-support distributions. It is well understood that
the existence of an approximation is equivalent to dispersionhood (see
Streufert (2005, Note 7) for details).

Lemma 4.2. Suppose that 〈[βn
z ]〉n approximates [qz/z′ ]. Then 〈[βn

z ]〉n
induces exactly one distribution, [qz/z′ ] induces exactly one distribution,
and these two distributions are identical.

Proof. Streufert (2005, Remark 2.1) yields that [qz/z′ ] induces exactly
one distribution. This is one of the lemma’s three conclusions. Let
[νQ

z ] denote this unique distribution, and note from the definition (9)
of inducement that there exists a z∗ such that

(∀z) νQ
z = qz/z∗/Σz′qz′/z∗ and(17a)

(∀z′) qz′/z∗ < ∞ .(17b)

Then

(∀z) νQ
z =1

qz/z∗

Σz′ qz′/z∗
(18)

=2
limn→∞(βn

z /βn
z∗)

Σz′ limn→∞(βn
z′/β

n
z∗)

=3
limn→∞(βn

z /βn
z∗)

limn→∞Σz′ (βn
z′/β

n
z∗)

=4 limn→∞
(βn

z /βn
z∗)

Σz′ (βn
z′/β

n
z∗)

=5 limn→∞
βn

z

Σz′ βn
z′

,

where =1 holds by (17a), =2 holds by the lemma’s assumption of ap-
proximation and the definition (16), =3 holds by the algebra of limits
and (17), =4 holds by the algebra of limits and the fact that the de-
nominator is at least βn

z∗/β
n
z∗ = 1, and =5 holds by algebra.

Equation (18) yields two conclusions. First, it shows that [νQ
z ] is

induced by 〈[βn
z ]〉n, and thus 〈[βn

z ]〉n induces at least one distribu-
tion. Second, if [νB

z ] is any distribution induced by 〈[βn
z ]〉n, then [νB

z ]
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must equal the right-hand side of (18), and hence, (18) yields that [νB
z ]

equals [νQ
z ], which is the unique distribution induced by [qz/z′ ]. Hence,

〈[βn
z ]〉n induces exactly one distribution, and that distribution equals

the unique distribution induced by [qz/z′ ]. 2

Lemma 4.3. Suppose a product over (Zi)`
i=1 is approximated by a

sequence of the form 〈[Π`
i=1β

n
zi
]〉n. Then, for any i, its marginal with

respect to Zi is appoximated by 〈[βn
zi
]〉n.

Proof. Let [qz/z′ ] be the product approximated by 〈[Π`
i=1β

n
zi
]〉n. Fix

any z?, and consider any dimension i. First, (11) yields that the mar-
ginal with respect to zi equals [qziz?

−i/z′iz
?
−i

]. Second, since [qziz?
−i/z′iz

?
−i

]
is a restriction of [qz/z′ ], and since all of [qz/z′ ] is approximated by
〈[Π`

j=1β
n
zj

]〉n, we know [qziz?
−i/z′iz

?
−i

] is approximated by 〈[βn
zi
](Πj 6=iβz?

j
)〉n

(remember that z?
−i is fixed). These two sentences together yield that

the marginal with respect to zi is approximated by 〈[βn
zi
](Πj 6=iβz?

j
)〉n.

Thus, since the definition (16) of approximation depends only on ra-
tios, the marginal with respect to zi is also approximated by 〈[βn

zi
]〉n.

2

Proof 4.4 (for Theorem 4.1(c⇒d)). Assume (c). For any n, define
the table [qn

w(ah)h/w′(a′h)h
] over W×ΠhAh by

(∀w(ah)h, w′(a′h)h) qn
w(ah)h/w′(a′h)h

=
ρwΠhπn

ah

ρw′Πhπn
a′h

,(19)

Notice that every such table is a product over (W, (Ah)h) because the
table’s definition ensures that all of the cancellation laws in (10) are
satisfied by means of ordinary algebra (every relative probability is
positive and finite).

Now consider the sequence 〈[qn
w(ah)h/w′(a′h)h

]〉n of such tables. This is
a sequence in (|W |·Πh|Ah|)2 dimensions and there is no reason to be-
lieve that it will converge. However, the sequence lies in the space
of products over (W, (Ah)h) (by the last sentence of the last para-
graph) and the space of all products over (W, (Ah)h) is compact (by
Streufert (2006a, Theorem 6.1)). Accordingly, a subsequence converges
to a product over (W, (Ah)h). Let 〈[qm

w(ah)h/w′(a′h)h
]〉m denote the sub-

sequence, and let [qw(ah)h/w′(a′h)h ] denote its limit. Hence, by (19), we
have that 〈[ρwΠhπm

ah
]〉m approximates the product [qw(ah)h/w′(a′h)h ].

First Half. By the previous sentence and Lemma 4.3, the marginal
dispersion of [qw(ah)h/w′(a′h)h ] with respect to w is approximated by the
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constant sequence 〈[ρw]〉m, and the marginal dispersion of this product
with respect to each ah is approximated by 〈[πm

ah
]〉m.

Note (rather easily) that [ρw] is induced by the dispersion that is
approximated by the constant sequence 〈[ρw]〉m. Since this dispersion
is the marginal with respect to w (by the previous paragraph), we have
that [ρw] is induced by the marginal with respect to w. Now consider
any h. Since 〈[πm

ah
]〉m approximates the marginal with respect to ah

(by the previous paragraph) and since [πah ] is induced by 〈[πm
ah

]〉m (by
the first half of (c)), we have that [πah ] is induced by the marginal with
respect to ah (by Lemma 4.2). Thus the first half of (d) holds.

Second Half. Now consider any h. Define

(∀xh) Nxh = { η | not (∃aη)(∃k∈{0, 1, ... `(xh)−1}) aη = α◦pk(xh) }

(thus Nxh contains those information sets which are not reached on the
way to xh). Note that

(∀xh)(∀m) Σ{Πη∈Nxh
πm

aη
|(aη)η∈Nxh

} = 1(20)

since [Πη∈Nxh
πm

aη
] is an ordinary product distribution over Πη∈Nxh

Aη

simply because every [πm
aη

] is a distribution over Aη. This leads to

(∀xh)(∀m) ρp`(xh)(xh)·Π`(xh)−1
k=0 πm

α◦pk(xh)

=1 ρp`(xh)(xh)·Π`(xh)−1
k=0 πm

α◦pk(xh)·Σ{Πη∈Nxh
πm

aη
|(aη)η∈Nxh

}(21)

=2 Σ{ ρp`(xh)(xh)·Π`(xh)−1
k=0 πm

α◦pk(xh)·Πη∈Nxh
πm

aη
|(aη)η∈Nxh

}
=3 Σw(aη)η∈Sxh

pwΠηπm
aη

,

where =1 holds by (20), =2 by algebra, and =3 by the definition (14)
of Sxh

.
Since 〈[ρwΠhπm

xh
]〉m approximates [qw(aη)η/w′(a′η)η ] (by the second para-

graph of the proof), the restriction of the sequence to ∪x′h
Sx′h

ap-
proximates the restriction of the dispersion to (∪x′h

Sx′h
)2. Hence, by

Lemma 4.2, we may let the left-hand side of (22) denote the unique
distribution induced by the restriction of the sequence to ∪x′hSx′h

, let
right-hand side of (22) denote the unique distribution induced by the
restriction of the dispersion to (∪x′h

Sx′h)
2, and record for future reference

that

[ν(c)
w(aη)η |∪x′h

Sx′h
] = [ν(d)

w(aη)η |∪x′h
Sx′h

] .(22)
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This paragraph uses (21) and (22) to derive the second half of (d).
In particular,

(∀xh) µxh

=1 limm→∞
ρp`(xh)(xh)Π

`(xh)−1
k=0 πm

α◦pk(xh)

Σx′h
ρp`(x′h)(x

′
h)Π

`(x′h)−1
k=0 πm

α◦pk(x′h)

=2 limm→∞
Σw(aη)η∈Sxh

pwΠηπm
aη

Σx′hΣw(aη)η∈Sxh
pwΠηπm

aη

=3 limm→∞Σw(aη)η∈Sxh

pwΠηπm
aη

Σw(aη)η∈∪x′h
Sx′h

pwΠηπm
aη

=4 Σw(aη)η∈Sxh
limm→∞

pwΠηπm
aη

Σw(aη)η∈∪x′h
Sx′h

pwΠηπm
aη

=5 Σw(aη)η∈Sxh
ν(c)

w(aη)η |∪x′h
Sx′h

=6 Σw(aη)η∈Sxh
ν(d)

w(aη)η |∪x′h
Sx′h

,

where =1 holds by the second half of (c), =2 holds by (21), =3 holds
by algebra, =4 holds by the algebra of limits and the fact that every
term being summed is less than one, =5 holds by the definition of
[ν(c)

w(aη)η |∪x′h
Sx′h

] above (22), and =6 holds by (22). By the definition of

[ν(d)
w(aη)η |∪x′h

Sx′h
] above (22) and by the definition of ν at (15), the entire

equality is the second half of (d). 2

4.3. Proof of Theorem 4.1(d⇒a)
This is the critical part of the proof. Its essential ingredient is

Streufert (2006a, Theorem 5.1), which shows that every product disper-
sion can be represented by a product of monomial vectors. This result
will be applied to [qw(ah)h/w′(a′h)h ] in order to obtain [cwnew ·Πhcahn

eah ].
In order to employ this theorem, we require a definition and two

lemmas. As in Streufert (2006a, equation (15)), a monomial vector
[cznez ] represents the table [qz/z′ ] defined by

(∀z, z′) qz/z′ = limn→∞
cznez

cz′nez′
=





∞ if ez > ez′

cz/cz′ if ez = ez′

0 if ez < ez′



(23)

(the second equality is an obvious fact). It is well understood that
the existence of a representation is equivalent to dispersionhood (see
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Streufert (2005, Note 4) for details). The following lemma notes that
representation is invariant to monomial multiplication.

Lemma 4.5. For any monomial ξnε and any monomial vector [cznez ],
the table represented by [cznez ] equals the table represented by ξnε[cznez ].

Proof. If [qz/z′ ] is represented by [cznez ] and [q?
z/z′ ] is represented by

ξnε[cznez ], then (23) implies

(∀z, z′) qz/z′ = limn→∞
cznez

cznez
= limn→∞

ξnεcznez

ξnεcznez
= q?

z/z′ .

2

Lemma 4.6. Suppose [cznez ] represents [qz/z′ ]. Then [cznez ] induces
exactly one distribution, [qz/z′ ] induces exactly one distribution, and
these two distributions are identical.

Proof. Any [cznez ] induces exactly one distribution because the limit
in the definition (6) of induction must exist when the functions of n are
monomials. Any [qz/z′ ] induces exactly one distribution by Streufert
(2005, Remark 2.1). Thus, if [cznez ] represents [qz/z′ ], the induced
distributions are identical by Streufert (2005, Lemma 5.2). 2

Proof 4.7 (for Theorem 4.1(d⇒a)). Assume (d). By Theorem
5.1(b⇒a) of Streufert (2006a), the product [qw(ah)h/w′(a′h)h ] is repre-
sented by some [cwnew ·Πhcahn

eah ]. Since representation is invariant to
monomial multiplication by Lemma 4.5, we may multiply this original
[cwnew ·Πhcahn

eah ] by the monomial

(Σw∈argmax{eω |ω}cw)−1n−max{eω |ω}

to arrive at a “normalized” [cwnew ·Πhcahn
eah ] which both represents

[qw(ah)h/w′(a′h)h ] and satisfies

max{ew} = 0 and Σw{cw|ew=0} = 1 .(24)

Further, by the second sentence of Streufert (2006a, Theorem 5.1), the
marginals of the product [qw(ah)h/w′(a′h)h ] are represented by [cwnew ] and
([cahn

eh ])h.

First Half. Consider any h. By the last sentence of the previous
paragraph, [cahn

eh ] represents the marginal with respect to ah. Thus,
by Lemma 4.6, the distribution induced by [cahn

eh ] equals the distribu-
tion induced by the marginal with respect to ah. The latter is [πah ] by
the first half of (d). Hence the former is [πah ] as well. In other words,
[πah ] is the distribution induced by [cahn

eh ]. This establishes the first
half of (a).
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Second Half. By the last sentence of the next-to-last paragraph,
[cwnew ] represents the marginal with respect to w. Thus, by Lemma 4.6,
the distribution induced by [cwnew ] equals the distribution induced by
the marginal with respect to w. The latter is [ρw] by the first half
of (d). Hence, the former is [ρw] as well. In other words, [ρw] is the
distribution induced by [cwnew ]. By the normalization (24) and the
assumption that [ρw] has full support, it must be that

[ρw] = [cwnew ] .(25)

Now consider any h. Since the monomial vector [cwnew ·Πhcahn
eah ]

represents the product [qw(ah)h/w′(a′h)h ] (by the first paragraph), the re-
striction of the monomial vector to ∪x′h

Sx′h
represents the restriction

of the product to (∪x′hSx′h
)2. Thus, by Lemma 4.6, we may let the

left-hand side of (26) denote the unique distribution induced by the re-
striction of the monomial vector, let the right-hand side of (26) denote
the unique distribution induced by the restriction of the product, and
record for future reference that

[ν(a)
w(aη)η |∪x′h

Sx′h
] = [ν(d)

w(aη)η|∪x′h
Sx′h

] .(26)

This paragraph uses (25) and (26) to derive the second half of (a).
In particular,

(∀xh) µxh

=1 Σw(ah)h∈Sxh
ν(d)

w(ah)h|∪x′h
Sx′h

=2 Σw(ah)h∈Sxh
ν(a)

w(ah)h|∪x′h
Sx′h

=3 Σw(ah)h∈Sxh
limn→∞

cwnew ·Πηcaηn
eaη

Σw′(a′h)h∈∪x′h
Sx′h

cw′new′ ·Πηca′ηn
ea′η

=4 limn→∞
Σw(ah)h∈Sxh

cwnew ·Πηcaηn
eaη

Σw′(a′h)h∈∪x′h
Sx′h

cw′new′ ·Πηca′ηn
ea′η

=5 limn→∞
Σw(ah)h∈Sxh

ρw·Πηcaηn
eaη

Σw′(a′h)h∈∪x′h
Sx′h

ρw′·Πηca′ηn
ea′η

,

where =1 holds by the second sentence of (d), the definition of ν at (15)
and the definition of [ν(d)

w(aη)η |∪x′h
Sx′h

] above (26), =2 holds by (26), =3

holds by definition of [ν(a)
w(aη)η |∪x′h

Sx′h
] above (26),=4 holds by the algebra

of limits and the fact that all the limits on the left-hand side are less
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than 1, and =5 holds by (25). The entire equality is the second half of
(a). 2

4.4. Proof of Theorem 4.1(a⇒b)
Essentially, this step simplifies (a)’s algebra to arrive at (b). The

trick is to use Lemma 4.8 to find a convenient “normalization” of the
monomial vectors ([cahn

eah ])h. Intuitively, this trick becomes clear in
the first two paragraphs of Proof 4.9. Unfortunately, the details are
taxing because the expressions determining beliefs have zero-limit de-
nominators at every zero-probability information set.

Lemma 4.8. For any monomial ξnε and any monomial vector [cznez ],
the distribution induced by [cznez ] is the same as the distribution in-
duced by ξnε[cznez ].

Proof. Suppose [νz] is induced by [cznez ] and [ν?
z ] is induced by

ξnε[cznez ]. Then by the definition (6) of inducement,

(∀z) νz = limn→∞
cznez

Σz′cz′nez′
= limn→∞

ξnεcznez

Σz′ξnεcz′nez′
= ν?

z .

2

Proof 4.9 (for Theorem 4.1(a⇒b)). Assume (a). Because induction
is invariant to monomial multiplication by Lemma 4.8, we may multiply
each original [cahn

eah ] by the monomial

(Σ{ cah | ah ∈ argmax{ea′h |a
′
h} })−1n−max{ea′h|a

′
h}

in order to arrive at a “normalized” ([cahn
eah ])h which satisfies both

halves of (a) as well as

(∀h) max{eah |ah} = 0 and(27a)

(∀h) Σ{cah |eah=0} = 1 .(27b)

First Half. The first half of (b) holds because

(∀ah) πah(28)

=1 limn→∞ cahn
eah/Σa′h

ca′h
nea′h

=2

(

cah/Σ{ca′h
|ea′h

=0} if eah=0
0 if eah<0

)

=3

(

cah if eah=0
0 if eah<0

)

=4 limn→∞ cahn
eah ,
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where =1 holds by the first half of (a), =2 holds by (27a), =3 holds by
(27b), and =4 holds by (27a).

Second Half. Fix h. The first task is to set up a way of dealing with
zero-limit denominators: define

eh = max{ Σηeaη | w(aη)η∈∪x′h
Sx′h } ,

and note that

(∀xh) limn→∞ n−eh·Σw(aη)η∈Sxh
ρwΠηcaηn

eaη ∈ [0,∞) and(29a)

(∃xh) limn→∞ n−eh·Σw(aη)η∈Sxh
ρwΠηcaηn

eaη ∈ (0,∞) .(29b)

Then, for any xh, define the set

Nxh = { η | not (∃aη)(∃k∈{0, 1, ... `(x)−1}) aη = α◦pk(x) }(30)

(thus Nxh consists of the information sets through which one does not
pass on the way to node xh). We can make two observations. First,

limn→∞ Σ{ Πη∈Nxh
caηn

eaη | (aη)η∈Nxh
}(31)

=1 Σ{ Πη∈Nxh
limn→∞ caηn

eaη | (aη)η∈Nxh
}

=2 Σ{ Πη∈Nxh
πxh | (aη)η∈Nxh

}
=3 1 ,

where =1 holds by (28) and the algebra of limits, =2 holds by (28), and
=3 holds because Πη∈Nxh

πxh is an ordinary product distribution over
the Cartesian product Πη∈Nxh

Aη. Second,

(∀xh) Σw(aη)η∈Sxh
ρwΠηcaηn

eaη(32)

=1 Σ{ ρwΠηcaηn
eaη | w = p`(xh)(xh) and

(∀k∈{0, 1, ... `(xh)−1}) aH◦pk+1(xh) = α◦pk(xh) }

=2 Σ{ ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh) ·Πη∈Nxh

caηn
eaη

| (aη)η∈Nxh
}

=3 ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh) ·

Σ{ Πη∈Nxh
caηn

eaη | (aη)η∈Nxh
} .

where =1 holds by the definition (14) of Sxh , =2 holds by the definition
(30) of Nxh , and =3 holds by algebra.

This paragraph uses (31) and (32) to derive the second half of (b).
It takes two steps. First,

(∀xh) limn→∞ n−eh ·Σw(aη)η∈Sxh
ρwΠηcaηn

eaη(33)
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=1 limn→∞ n−eh·ρp`(x)(x)·Π`(x)−1
k=0 cα◦pk(x)neα◦pk(x) ·

Σ{ Πη∈Nxh
caηn

eaη | (aη)η∈Nxh
}

=2 limn→∞ n−eh·ρp`(x)(x)·Π`(x)−1
k=0 cα◦pk(x)neα◦pk(x) ·

limn→∞ Σ{ Πη∈Nxh
caηn

eaη | (aη)η∈Nxh
}

=3 limn→∞ n−eh ·ρp`(x)(x)·Π`(x)−1
k=0 cα◦pk(x)neα◦pk(x) ,

where =1 holds by (32), =2 holds (29a), (31), and the algebra of limits,
and =3 holds by (31). Second,

(∀xh) µxh

=1 limn→∞
Σw(aη)η∈Sxh

ρwΠηcaηn
eaη

Σw(aη)η∈∪x′h
Sx′h

ρwΠηcaηn
eaη

=2 limn→∞
n−eh·Σw(aη)η∈Sxh

ρwΠηcaηn
eaη

Σx′h
n−eh·Σw(aη)η∈Sx′h

ρwΠηcaηn
eaη

=3
limn→∞ n−eh·Σw(aη)η∈Sxh

ρwΠηcaηn
eaη

Σx′h
limn→∞ n−eh·Σw(aη)η∈Sx′h

ρwΠηcaηn
eaη

=4

limn→∞ n−eh·ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h
limn→∞ n−eh·ρp`(x′h)(x

′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

=5 limn→∞
n−eh ·ρp`(xh)(xh)·Π`(xh)−1

k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h n−eh ·ρp`(x′h)(x
′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

=6 limn→∞
ρp`(xh)(xh)·Π`(xh)−1

k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h ρp`(x′h)(x
′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

where =1 is the first half of (a), =2 follows from algebra, =3 follows
from (29) and the algebra of limits, =4 follows from (33), =5 follows
from (29), (33) and the algebra of limits, and =6 follows by algebra.
The entire equality is the second half of (b). 2

4.5. Proof of Theorem 4.1(b⇒c)
This step transforms each monomial vector [cxhn

exh ] into a strategy
sequence 〈[πn

ah
]〉n = 〈[cahn

eah ](Σa′h
ca′h

nea′h )−1〉n. Intuitively, this is clear:
at each n, the divisor Σa′h

ca′h
n

ea′h normalizes the vector so that it sums
to one. Unfortunately, the details are nontrivial since the normalizing
divisors must be carried into the expressions determining beliefs, and
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such expressions have zero-limit denominators at every zero-probability
information set.

Proof 4.10 (for Theorem 4.1(b⇒c)). Assume (b). Define (〈[πn
xh

]〉n)h

by

(∀h)(∀n) [πn
xh

] = [cxhn
exh ]·(Σx′h

cx′h
n

ex′h )−1 .(34)

First Half. Note

(∀h) limn→∞Σahcahn
eah(35)

=1 Σah limn→∞cahn
eah

=2 Σxhπah

=3 1 ,

where =1 holds by the first half of (b) and the algebra of limits, =2

holds by the first half of (b), and =3 holds by the well-definition of π.
Then

(∀h) [πah ](36)

=1 limn→∞ [cahn
eah ]

=2 limn→∞ [cahn
eah ](limn→∞Σx′h

cx′h
n

ex′h )−1

=3 limn→∞ [cahn
eah ](Σx′h

cx′hn
ex′h )−1

=4 limn→∞ [πn
ah

] ,

where =1 holds by the first half of (b), =2 holds by (35), =3 holds by
the first half of (b), (35) and the algebra of limits, and =4 holds by the
definition (34) of 〈[πn

ah
]〉n.

Second Half. Fix h. Define

eh = max{ Σ`(xh)−1
k=0 eα◦pk(xh) | xh } ,

and note that

(∀xh) limn→∞ n−eh ·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh) ∈ [0,∞) and(37a)

(∃xh) limn→∞ n−eh·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh) ∈ (0,∞) .(37b)

Further, for each xh, define Yxh by

Yxh = { η | (∃aη)(∃k∈{0, 1, ... `(x)−1}) aη = α◦pk(xh) }

(thus Yxh is the set of information sets that are passed through on the
way to xh.) Note that

(∀xh) limn→∞ n−eh ·ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh)(38)
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=1

limn→∞ n−eh ·ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh)

Πη∈Yxh
limn→∞ Σaηcaηn

eaη

=2 limn→∞
n−eh ·ρp`(xh)(xh)·Π`(xh)−1

k=0 cα◦pk(xh)neα◦pk(xh)

Πη∈Yxh
Σaηcaηn

eaη

=3 limn→∞ n−eh·ρp`(xh)(xh)·Π`(xh)−1
k=0 πn

α◦pk(xh) ,

where =1 holds by (35), =2 holds by (35), (37a), and the algebra of
limits, and =3 holds by algebra and (34). Then

(∀xh) µxh

=1 limn→∞
ρp`(xh)(xh)·Π`(xh)−1

k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h ρp`(x′h)(x
′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

=2 limn→∞
n−eh·ρp`(xh)(xh)·Π`(xh)−1

k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h
n−eh ·ρp`(x′h)(x

′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

=3

limn→∞ n−eh ·ρp`(xh)(xh)·Π`(xh)−1
k=0 cα◦pk(xh)neα◦pk(xh)

Σx′h
limn→∞ n−eh·ρp`(x′h)(x

′
h)·Π

`(x′h)−1
k=0 cα◦pk(x′h)n

eα◦pk(x′h)

=4

limn→∞ n−eh·ρp`(xh)(xh)·Π`(xh)−1
k=0 πn

α◦pk(xh)

Σx′h
limn→∞ n−eh·ρp`(x′h)(x

′
h)·Π`(xh)−1

k=0 πn
α◦pk(x′h)

=5 limn→∞
n−eh ·ρp`(xh)(xh)·Π`(xh)−1

k=0 πn
α◦pk(xh)

Σx′h
n−eh ·ρp`(x′h)(x

′
h)·Π`(xh)−1

k=0 πn
α◦pk(x′h)

,

=6 limn→∞
ρp`(xh)(xh)·Π`(xh)−1

k=0 πn
α◦pk(xh)

Σx′h
ρp`(x′h)(x

′
h)·Π`(xh)−1

k=0 πn
α◦pk(x′h)

,

where =1 holds by the second half of (b), =2 holds by algebra, =3 holds
by (37) and the algebra of limits, =4 holds by (38), =5 holds (37), (38)
and the algebra of limits, and =6 holds by algebra. The entire equality
is the second half of (c). 2

Appendix A. Real Exponents

Throughout the paper, the symbol e assumes integer values, and ac-
cordingly, Theorem 2.1 and Theorem 4.1(a&b) are concerned with char-
acterizing consistency by means of integer exponents. This appendix
notes that this paper’s results for integer exponents are stronger than
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analogous results for real exponents. In particular, Corollary A.1 fol-
lows from Theorem 4.1 and two components of its proof. Here ([ėah ])h

lists a vector [ėah ] of real exponents ėah ∈ R at every information set
h.

Corollary A.1. Let [T,≺, A, α, ρ, H] be a game form. Then the
following are equivalent for any assessment ([µxh ], [πah ])h. (ȧ) There
exists a ([cahn

ėah ])h such that

(∀h) [πah ] is induced by [cahn
ėah ] and

(∀h) [µxh ] is induced by Σw(ah)h∈Sxh
ρwΠhcahn

ėah .

(ḃ) There exists a ([cahn
ėah ])h such that

(∀h) [πah ] = limn→∞[cahn
ėah ] and

(∀h) [µxh ] is induced by [ρ`(xh)·Π`(xh)−1
k=0 cα◦pn(xh)nėα◦pn(xh) ] .

(c) ([πxh ], [µxh ])h is consistent.

Proof. As with Theorem 4.1, the downhill implications are relatively
easy. (ȧ) implies (ḃ) by Proof 4.9 after replacing (a) with (ȧ), (b) with
(ḃ), and e with ė. Then, (ḃ) implies (c) by Proof 4.10 after replacing
(b) with (ḃ) and e with ė.

(c) implies (ȧ) via two steps. First, (c) implies statement (a) of
Theorem 4.1 by Theorem 4.1 (this is the hard part). Second, this (a)
implies (ȧ) since the existence of monomials with integer coefficients
implies the existence of monomials with real coefficients. 2

Theorem 4.1(a⇔b⇔c) is strictly stronger than Corollary A.1 to the
extent that (a) is strictly stronger than (ȧ) and to the extent that (b)
is strictly stronger than (ḃ). In other words, Corollary A.1 derives
the existence of real, but not necessarily integer, exponents. Corol-
lary A.1(ḃ⇔c) appears to be equivalent to a reformulation of Theo-
rem 3.1 in Perea y Monsuwe, Jansen, and Peters (1997).
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