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PRODUCTS OF SEVERAL RELATIVE PROBABILITIES

Peter A. Streufert
University of Western Ontario
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Abstract. This paper defines and develops the concept of a prod-
uct dispersion over any finite number of dimensions. The concept
itself is nontrivial because products over several dimensions cannot
be constructed by an iterative binary operation. Yet the paper’s
most important contribution is to characterize product dispersions
by means of monomials. This result is derived through elementary
linear algebra, and can be used to characterize the consistency of
beliefs in extensive-form games (Streufert (2006a)).

1. Introduction

A dispersion is a system of relative probabilities over some underly-
ing set. Such a dispersion must satisfy a basic cancellation law that
resembles transitivity. If the underlying set is a Cartesian product, one
can also define a stronger concept known as producthood. A prod-
uct dispersion must satisfy not only the basic cancellation law, but
also a vast number of other cancellation laws which embody the notion
that cancellations can occur in the different dimensions independently.
(Essentially, the concept of producthood extends the concept of inde-
pendence from ordinary probabilities to relative probabilities.)

Theorem 5.1 is this paper’s central result. It shows that a table of
relative probabilities is a product iff it can be represented by a product
of monomial vectors.

It might be useful to frame this result with an analogy. Consider
consumer theory under the very restrictive assumption that the com-
modity space is finite. There we know that a binary relation is an
ordering iff it can be represented by a utility function. Analogously, a
table of relative probabilities is a dispersion iff it can be represented by
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2 STREUFERT

a vector of monomials (McLennan (1989b) as reformulated in Streufert
(2005, paragraph containing Note 4)).

Now continue this analogy when the underlying set is a Cartesian
product. In consumer theory, we know that an ordering is separable
across the dimensions of the Cartesian product iff it can be represented
by a sum of (sub)utility functions defined at each dimension (as in
Gorman (1968)). Analogously, Theorem 5.1 shows that a dispersion is
a product iff it can be represented by a product of monomial vectors
defined at each dimension.

Streufert (2006a) uses this theorem to characterize the consistency
of beliefs in extensive-form games. Further, Streufert (2006b) shows
that the absence of this theorem corresponds to a fallacy in the proofs
of Kreps and Wilson (1982).

Although it takes nine pages to prove this theorem, the argument is
surprisingly elementary. It draws on the insights of Scott (1964) and
Krantz, Luce, Suppes, and Tversky (1971) and uses nothing more than
basic linear algebra (the first paragraphs in Subsections 5.3 and 5.4
provide further details).

Although Theorem 5.1 is this paper’s main contribution, a number
of subsidiary results are also provided.

Section 2 develops an alternative formulation of producthood that
allows one to use reciprocals. Section 3 shows that producthood coin-
cides with dispersionhood when the underlying set is taken to be one-
dimensional. Section 4 discusses the nontrivial relationship between a
product and its marginals. And finally, Appendix A exhibits an ex-
ample which demonstrates that three-dimensional products cannot be
constructed by iteratively applying the two-dimensional concept.

All of the above employs nothing more than basic linear algebra.
Section 6 mixes in a little topology. It shows that the set of products
is compact (Theorem 6.1) and that it coincides with the closure of the
set of positive products (Remark 6.3). Remark 6.3 is equivalent to
a reformulation of a theorem in Kohlberg and Reny (1997) (and this
result appears to be this paper’s closest predecessor).

2. Products

2.1. Definition
This section formally defines producthood over several dimensions.

For introductory examples and intuition in a two-dimensional setting,
see Streufert (2005, Sections 2 and 3).
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Let (Xi)`
i=1 be a nonempty finite vector of nonempty finite sets (it

is convenient but not logically necessary to make these ` sets disjoint).
Then construct the Cartesian product X = Π`

i=1Xi containing vectors
x = (xi)`

i=1. For example, if X1 = {A, B, C} and X2 = {a, b}, then
one of the six vectors in X = X1×X2 = {A,B,C}×{a, b} would be
x = x1x2 = Cb (the notation x = (x1, x2) = (C, b) is too clumsy).

Then let a table over X be a [qx/x′ ] ∈ [0,∞]X2 which lists a relative
probability qx/x′ ∈ [0,∞] for every pair of elements x and x′ from X.
For example, suppose X1 = {A,B, C} and X2 = {a, b}. Then the table
[qx/x′ ] would contain 36 = |X|2 scalars, the scalar qCb/Aa would give the
probability of Cb relative to Aa, and the value qCb/Aa = ∞ would mean
that Cb is infinitely more likely than Aa.

This paragraph uses an example to introduce the concept of a cancel-
lation law. Imagine encountering the following product of three relative
probabilities

qCb/Ab×qAa/Cb×qBb/Ba .

It would seem natural to cancel out the B in the “numerator” of the
third term with the B in the “denominator” of that same term to arrive
at

qCb/Ab×qAa/Cb×q6Bb/6Ba ,

then to cancel out a pair of A’s and a pair of C’s to arrive at

q6Cb/6Ab×q6Aa/ 6Cb×q6Bb/ 6Ba ,

and finally to cancel out a pair of a’s and two pairs of b’s to reach the
conclusion that

qCb/Ab×qAa/Cb×qBb/Ba = 1 .

However, relative probabilities can take on values of 0 and ∞, and this
can lead to cases in which our product of three terms is undefined.
Accordingly, the formal definition of producthood below will impose
the cancellation law

1 ∈ �(qCb/Ab, qAa/Cb, qBb/Ba) ,(1)

in which the set �(qCb/Ab, qAa/Cb, qBb/Ba) is either [0,∞] (in the case
that one of {qCb/Ab, qAa/Cb, qBb/Ba} is 0 and another is ∞) or the sin-
gleton containing the ordinary product qCb/Ab×qAa/Cb×qBb/Ba (in all
other cases). Hence (1) imposes a restriction exactly when the ordi-
nary product is well-defined.
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To formulate such a cancellation law rigorously, we must first define
exactly what the symbol � means. It is a set-valued function which
assigns a subset of [0,∞] to every finite vector (uj)m

j=0 ∈ [0,∞]1+m of
scalars uj from [0,∞]. It is defined by the rule

�(uj)m
j=0 =

(

[0,∞] if (∃j)uj=0 and (∃j)uj=∞
{Πm

j=0u
j} otherwise

)

when (uj)m
j=0 is nonempty, and by the rule that the empty vector is

mapped to {1} (for example, �(uj)0
j=1 = {1}).

Here are two tangential remarks about �. First, the argument of
� is a vector and not a set. If it were a set, � would need to as-
sume the same value at {3} as at {3, 3} and we do mean to say that
�(3) = {3} and �(3, 3) = {9}. Second, the notation �m

j=0u
j is not used

because it suggests that there is a binary relation � which could de-
rive �(3,∞, 0) as 3�(∞�0). This cannot be done because 3�(∞�0)
reduces to 3�[0,∞], which is an ill-defined “product” of a scalar with
a set.

Formally, a cancellation law is a statement of the form

(∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj )m

j=0 ,(2)

where m is a nonnegative scalar, where σ = (σi)`
i=1 is a vector listing in

each dimension i a permutation σi of the set {0, 1, 2, ... m}, and where
each vector xσ,j ∈ X is defined by

xσ,j = (xσ1(j)
1 , xσ2(j)

2 , . . . xσn(j)
n ) .

The integer m is called the order of the cancellation law, and, an
application of the law at a particular (xj)m

j=0 is called an instance of
the law.

For example, (1) is the instance x0=Ab, x1=Cb, x2=Ba of the second-
order cancellation law

(∀x0, x1, x2) 1 ∈ �{qx1
1x

1
2/x

0
1x

0
2
, qx0

1x
2
2/x

1
1x

1
2
, qx2

1x
0
2/x

2
1x

2
2
} .(3)

This law has the form (2) when the permutation vector σ = (σ1, σ2)
defined by σ1(0) = 1, σ1(1) = 0, σ1(2) = 2 and σ2(0) = 1, σ2(1) = 2,
σ2(2) = 0. To make these two observations about the cancellation law
(3), keep your eyes on its superscripts and note that its denominators
are fixed.

Before proceeding further, notice that the cancellations in the exam-
ple are occurring independently in the two dimensions. One can see
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this in both (1) and (3). This independent cancellation is the heart of
the definition of producthood.

A product over (Xi)`
i=1 is an element of the set ∆· (Xi)`

i=1 defined by

{ [qx/x′ ] ∈ [0,∞]X
2 |(4)

(∀m)(∀σ)(∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj )m

j=0 } .

That is, a product is a table [qx/x′ ] over the Cartesian product X =
ΠiXi that satisfies every instance (as specified by (xj)m

j=0) of every
cancellation law (as specified by σ) of every order m ≥ 0.

There are ((1+m)!)` cancellation laws of order m because there are
(1+m)! permutations in each of the ` dimensions. Further, there are
(Π`

i=1|Xi|)1+m instances of each cancellation law because there are
Π`

i=1|Xi| vectors in X. These numbers increase astronomically with
the dimension `, the order m, and the sizes (|Xi|)`

i=1 of the underlying
sets.

2.2. An Alternative Formulation
Remark 2.1 gives an alternative formulation of producthood. Among

other things, this result implies that the `-dimensional concept of pro-
ducthood defined in this paper is an extension of the two-dimensional
concept of producthood defined in Streufert (2005) (equation (21) there
coincides with (5) here when ` = 2). Further, that paper’s Note 2
explains that producthood is similar and equivalent to the acyclicity
appearing Kohlberg and Reny (1997, Theorem 2.10), and addition-
ally, that producthood is dissimilar but nonetheless equivalent to fur-
ther concepts in McLennan (1989b), Blume, Brandenburger, and Dekel
(1991), Hammond (1994), and Kohlberg and Reny (1997).

Remark 2.1. The set ∆· (Xi)`
i=1 of products over (Xi)`

i=1 is equal to

{ [qx/x′ ] ∈ [0,∞]X
2 |(5)

(∀m)(∀σ)(∀(xj)m
j=0) qx0/xσ,0 ∈ �(qxσ,j/xj )m

j=1 } .

The remainder of this subsection proves Remark 2.1 with the assis-
tance of the following lemma.

Lemma 2.2. For any (uj)m
j=0 ∈ [0,∞]1+m, we have that 1 ∈ �(uj)m

j=0

iff 1/u0 ∈ �(uj)m
j=1.

Proof. If m = 0, the two inclusions become 1 ∈ {u0} and 1/u0 ∈ {1},
which are equivalent.
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If m ≥ 1, there are twelve cases defined by

�(uj)m
j=1=[0,∞] T T T

�(uj)m
j=1={∞} T F F

(∃v∈(0,∞)) �(uj)m
j=1={v} F ⇔ F

�(uj)m
j=1={0} F F T

u0=0 u0∈(0,∞) u0=∞

.

In five cases I will show that both inclusions are true, in six cases I will
show that both inclusions are false, and in the remaining case I will
show that the two inclusions are equivalent by another route.

First consider the top three cases. There, �(uj)m
j=1 is [0,∞], thus

�(uj)m
j=0 is also [0,∞], and thus, both inclusions vacuously hold.

Then consider those three of the remaining nine cases in which
u0 = 0. In the case �(uj)m

j=1 = {∞}, the left inclusion is true be-
cause �(uj)m

j=0 = [0,∞] and the right inclusion is also true because
1/u0 = ∞. In the case (∃v∈(0,∞)) �(uj)m

j=1 = {v} and also in the
case �(uj)m

j=1 = {0}, the left inclusion is false since �(uj)m
j=0 = {0}

and the right inclusion is also false since 1/u0 = ∞.
Next consider those three of the remaining six cases in which u0 ∈

(0,∞). In the case �(uj)m
j=1 = {∞}, the left inclusion fails since

�(uj)m
j=0 = {∞} and the right inclusion also fails since 1/u0 ∈ (0,∞).

In the case (∃v∈(0,∞)) �(uj)m
j=1 = {v}, the left inclusion is equiv-

alent to 1 = Πm
j=0u

j which is equivalent to 1/u0 = Πm
j=1u

j which is
equivalent to the right inclusion. In the case �(uj)m

j=1 = {0}, the left
inclusion fails because �(uj)m

j=0 = {0} and the right inclusion fails
because 1/u0 ∈ (0,∞).

Finally consider the remaining three cases. Here u0 = ∞. In the case
�(uj)m

j=1 = {∞} and also in the case (∃v∈(0,∞)) �(uj)m
j=1 = {v}, the

left inclusion is false since �(uj)m
j=0 = {∞} and the right inclusion is

also false since 1/u0 = 0. In the case �(uj)m
j=1 = {0}, the left inclusion

is true because �(uj)m
j=0 = [0,∞] and the right inclusion is also true

since 1/u0 = 0. 2

Proof of Remark 2.1. (4) ⊆ (5). Suppose that [qx/x′ ] is an element
of (4). A first-order cancellation law is (∀x, x′) 1 ∈ �{qx/x′ , qx′/x}, and
thus it must be the case that (∀x, x′) qx/x′ = 1/qx′/x. Hence [qx/x′ ] is
an element of (5) by Lemma 2.2.

(4) ⊇ (5). Suppose that [qx/x′ ] is an element of the set (5). The zero-
order cancellation law is (∀x) qx/x ∈ {1} and a second-order cancella-
tion law is (∀x, x′) qx/x ∈ �{qx/x′ , qx′/x}. By using the first inclusion to
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replace the qx/x in the second, one finds that (∀x, x′) 1 ∈ �{qx/x′ , qx′/x},
and thus, that (∀x, x′) qx/x′ = 1/qx′/x. Hence [qx/x′ ] is an element of
(4) by Lemma 2.2. �

3. Dispersions

3.1. Definition
Consider any finite set Z. Streufert (2005, page 9) defines a disper-

sion over Z to be a table [qz/z′ ] that satisfies unit diagonality

(∀z) qz/z′ = 1(6)

and the basic cancellation law

(∀z, z′, z′′) qz/z′′ ∈ �(qz/z′ , qz′/z′′) .(7)

It is easy to show that every dispersion satisfies reciprocity

(∀z, z′) qz/z′ = 1/qz′/z(8)

(unit diagonality and the basic cancellation law at (z, z′, z′′) = (z, z′, z)
imply that (∀z, z′) 1 = qz/z ∈ �(qz/z′ , qz′/z), and thus, it must be the
case that either qz/z′qz′/z = 1 for some positive finite numbers qz/z′ and
qz′/z, or that one of qz/z′ and qz′/z is zero and the other is infinity).

Note 1 of that Streufert (2005) explains that a dispersion here is
similar and equivalent to a matrix of log-likelihoods in McLennan
(1989b), a conditional probability system in Myerson (1986), and a
random variable defined on a relatively probability space in Kohlberg
and Reny (1997). The same note also explains how dispersionhood is
dissimilar but nonetheless equivalent to concepts in McLennan (1989a),
Blume, Brandenburger, and Dekel (1991), Monderer, Samet, and Shap-
ley (1992), Hammond (1994), and Vieille (1996).

3.2. Dispersionhood is One-Dimensional Producthood
Note that Section 2’s definition of producthood can be applied to

one set (i.e., to a one-dimensional vector of sets). Accordingly, the set
∆· (Z) of “products” over some set Z is

{ [qz/z′ ] ∈ [0,∞]Z
2 |(9)

(∀m)(∀σ)(∀(zj)m
j=0) 1 ∈ �(qzτ(j)/zj )m

j=0 } ,

where τ is a permutation of {0, 1, ... m}. In particular, (9) is the defi-
nition (4) of producthood evaluated at ` = 1, X1 = Z, and σ1 = τ .
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Remark 3.1 shows that ∆· (Z) equals the set of dispersions over Z.
Accordingly, one-dimensional producthood is equivalent to dispersion-
hood (and hence ∆· (Z) can be used to denote the set of all dispersions
over Z).

Remark 3.1. For any set Z, ∆· (Z) is the set of dispersions over Z.
Proof. Necessity of Dispersionhood. By Remark 2.1, the set (9) is

equal to

{ [qz/z′ ] ∈ [0,∞]Z
2 |(10)

(∀m)(∀τ)(∀(zj)m
j=0) qz0/zτ(0) ∈ �(qzτ(j)/zj )m

j=1 }

Since the only permutation of {0} is the identity map, (10)’s cancella-
tion law at m = 0 is

(∀z0) qz0/z0 ∈ {1},

which is equivalent to unit diagonality (6). Further, (10)’s cancellation
law at m = 2 and the permutation τ(0) = 2, τ(1) = 0, τ(2) = 1 is

(∀z0, z1, z2) qz0/z2 ∈ �(qz0/z1 , qz1/z2) ,

which is the basic cancellation law (7).
Sufficiency of Dispersionhood. Suppose that [qz/z′ ] is a dispersion.

Then fix any m ≥ 0, any permutation τ of {0, 1, ... m}, and any (zj)m
j=0.

Our task is to derive (9)’s cancellation law, namely, 1 ∈ �(qzτ(j)/zj)m
j=0.

Since this holds trivially if (∃j) qzτ(j)/zj = 0 and (∃j) qzτ(j)/zj = ∞,
we may assume without loss of generality that either every element of
(qzτ(j)/zj)m

j=0 is finite or every element is positive.
First suppose that every element of (qzτ(j)/zj)m

j=0 is finite. This and
the next two paragraphs will show that for all k ∈ {0, 1, ... m}, there
exists a permutation τ k of {0, 1, ... k} such that

Πm
j=0qzτ(j)/zj = Πk

j=0qzτk(j)/zj and(11a)

every element of (q
zτk(j)/zj )

k
j=0 is finite.(11b)

This task will be accomplished by induction on k. The initial step at
k = m holds by defining τm = τ : (11a) is then trivial and (11b) holds
by the assumption beginning this paragraph. Now suppose there is a
τ k satisfying (11) at some k ∈ {1, 2, ... m}. The next two paragraphs
derive a τ k−1 satisfying (11) at k−1. Two cases arise.

On the one hand, it might be that τ k(k) = k. In this case, let τ k−1

be the restriction of τ k to {0, 1, ... k−1}. Then (11b) at k−1 follows
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from (11b) at k. Further (11a) at k−1 holds by

Πm
j=0qzτk(j)/zj

=1 Πk
j=0qzτk(j)/zj

=2 (Πk−1
j=0qzτk(j)/zj )×q

zτk(k)/zk

=3 (Πk−1
j=0qzτk−1(j)/zj )×qzk/zk

=4 Πk−1
j=0qzτk−1(j)/zj ,

where =1 holds by the (11a) at k, =3 holds by the definition of τ k−1

and the case definition τ k(k) = k, and =4 holds by the unit diagonality
(6) of the dispersion [qz/z′ ].

On the other hand, it might be that τ k(k) 6= k. In this case, let
k0 = (τ k)−1(k), and note that k0 6= k because τ is a permutation and
τ k(k) 6= k. Then define τ k−1 at k0 to be τ k(k), and define τ k−1 over
the remainder of {0, 1, ... k−1} to coincide with τ k. Casually speaking,
τ k−1 is defined so as to “bridge” over k by mapping k’s “predecessor”
k0 to k’s “successor” τ k(k). We begin with two observations about the
probability of k’s successor relative to k’s predecessor:

q
zτk−1(k0)/zk0(12a)

=1 q
zτk(k)/zk0

=2 q
zτk(k)/zk × qzk/zk0 ,

and q
zτk−1(k0)/zk0 is finite,(12b)

where the =1 holds by the definition of τ k−1, and both =2 and (12b)
hold by the basic cancellation law (7) of the dispersion [qz/z′ ] and by
the fact that the two factors after =2 are finite by (11b) at k. Then
(11b) at k−1 holds by (12b), by (11b) at k, and by the definition of
τ k−1. Further (11a) holds at k−1 by

Πm
j=0qzτk(j)/zj

=1 Πk
j=0qzτk(j)/zj

=2 (Πj∈{0,1,... k}∼{k,k0}qzτk(j)/zj ) × q
zτk(k)/zk × qzk/zk0

=3 (Πj∈{0,1,... k}∼{k,k0}qzτk(j)/zj ) × q
zτk−1(k0)/zk0
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=4 (Πj∈{0,1,... k−1}∼{k0}qzτk−1(j)/zj ) × q
zτk−1(k0)/zk0

=5 Πk−1
j=0qzτk−1(j)/zj ,

where =1 holds by (11a) at k, =2 holds by the definition of k0, =3 holds
by (12a), and =4 holds by the definition of τ k−1.

Thus, we may conclude that there is a permutation τ 0 of {0} such
that (11a) holds at k = 0. In other words, there is some τ 0 such that

Πm
j=0qzτ(j)/zj = Π0

j=0qzτ0(0)/z0 .

Therefore, since the only permutation of {0} is the identity map and
since [qz/z′ ] has a unit diagonal (6) by dispersionhood,

Πm
j=0qzτ(j)/zj = qz0/z0 = 1 .

Recall the two cases laid out in the second paragraph of the proof.
The first assumed that every element of (qzτ(j)/zj)m

j=0 was finite. Now
assume that every element of (qzτ(j)/zj)m

j=0 is positive. Here

�(qzτ(j)/zj)m
j=0

=1 Πm
j=0qzτ(j)/zj

=2 [Πm
j=0qzj/zτ(j) ]−1

=3 [Πm
j=0qzτ−1(j)/zj ]−1

=4 [1]−1 = 1 ,

where =1 follows from the positivity of every qzτ(j)/zj , =2 follows from
reciprocity (8), =3 holds because multiplication is commutative, and
=4 follows from the previous case since every qzτ−1(j)/zj is finite because
every qzτ(j)/zj is positive. 2

3.3. Every Product is a Dispersion
Now consider a vector of sets (Xi)`

i=1. By (4) in Section 2, the
symbol ∆· (Xi)`

i=1 denotes the set of products over (Xi)`
i=1. By (9) in

this section, the symbol ∆· (Π`
i=1Xi) denotes the set of dispersions over

Π`
i=1Xi. These two sets are comparable because both the products and

the dispersions are tables over Π`
i=1Xi. Remark 3.2 shows that every

product is a dispersion (and thus the terms “product” and “product
dispersion” are synonymous).

Remark 3.2. ∆· (Xi)`
i=1 is a subset of ∆· (Π`

i=1Xi).
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Proof. As in (4), let X = Π`
i=1, let x denote a vector in X, and let

σ denote a vector of ` permutations. Also, as in (9), let τ denote one
permutation. Then

∆· (Xi)`
i=1

=1 { [qx/x′ ] | (∀m)(∀σ)(∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj)m

j=0 }
⊆2 { [qx/x′ ] | (∀m)(∀σ) σ1 = σ2 = · · · = σ` implies

(∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj)m

j=0 }
=3 { [qx/x′ ] | (∀m)(∀τ)(∀(xj)m

j=0) 1 ∈ �(qxτ(j)/xj)m
j=0 }

=4 ∆· (Π`
i=1Xi) ,

where =1 is (4), =3 follows from setting τ = σ1, and =4 is (9). 2

Further, Remark 3.2’s inclusion is typically strict because ⊆2 typi-
cally holds only one way. In other words, dispersions are typically not
products because products satisfy the cancellation law for all permuta-
tion vectors σ = (σ1, σ2, . . . σ`), while dispersions need only satisfy the
cancellation law for permutation vectors in which σ1 = σ2 = · · · = σ`.
Essentially, the definition of dispersionhood over Π`

i=1Xi treats the el-
ements of Π`

i=1Xi as if they were one-dimensional.
In accord with the preceding paragraph, there are instances in which

∆· (Π`
i=1Xi)∼∆· (Xi)`

i=1 is nonempty. In other words, there are disper-
sions over Cartesian products which fail to be products. One such
example is discussed in Streufert (2003, next-to-last paragraph of Sec-
tion 3.2): it has ` = 2 and |X1| = |X2| = 3 and reformulates Kohlberg
and Reny (1997, Figure 1). A second such example appears in the proof
of this paper’s Remark A.1(b): it has ` = 3 and |X1| = |X2| = |X3| = 2,
it is a dispersion over Π3

i=1Xi because it is a product over (X1, X2×X3),
and yet, it is not a product over (X1, X2, X3). I am not aware of any
simpler examples.

4. Marginals

The marginals of a product [qx/x′ ] over (Xi)`
i=1 are the ` dispersions

([qxi/x′i ])
`
i=1 which satisfy

(∀x, x′) qx/x′ ∈ �(qxi/x′i)
`
i=1 .(13)

Note that marginals are defined to be dispersions, and consequently,
each marginal must itself satisfy unit diagonality (6) and the basic
cancellation law (7) (hence “marginal” and “marginal dispersion” are
synonymous).
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Remark 4.1. Every product [qx/x′ ] over (Xi)`
i=1 has a unique vector

of marginals ([qxi/x′i ])
`
i=1. Further, for any dimension i, the marginal

[qxi/x′i ] equals [qxix?
−i/x′ix

?
−i

] for any x?
−i ∈ Πj 6=iXj.

Proof. Take any product [qx/x′ ] over (Xi)`
i=1.

First we show that [qx/x′ ] has at least one vector of marginals. Choose
some x◦ and define each [qxi/x′i ] to be [qxix◦−i/x′ix

◦
−i

]. Then (13) holds
because

(∀x, x′) qx/x′ ∈1 �(qxix◦−i/x′ix
◦
−i

)`
i=1 =2 �(qxi/x′i)

`
i=1 ,

where ∈1 is an `th-order cancellation law (this can be verified by can-
celing terms) and =2 holds by the definition of ([qxi/x−i ])

`
i=1. Further,

note that any restriction of a dispersion to a smaller domain is neces-
sarily a dispersion in its own right (this holds because the satisfaction
of (6) and (7) on the original domain implies their satisfaction on the
smaller domain). Thus, each [qxi/x′i ] is a dispersion because it is defined
to be a restriction of the (product) dispersion [qx/x′ ].

Second, suppose that ([qxi/x′i ])
`
i=1 is a vector of marginals. Thus

(∀i)(∀xi, x′i, x
?
−i) qxix?

−i/x′ix
?
−i

(14)

∈1 �(qxi/x′i , (qx?
j /x?

j
)j 6=i)

=2 �(qxi/x′i , 1, 1, . . . 1)

=3 {qxi/x′i} .

where ∈1 holds by (13) and =2 holds by the unit diagonality of every
marginal. Thus each marginal [qxi/x′i ] must equal [qxix?

−i/x′ix
?
−i

] for any
value of x?

−i. 2

Finally, start anew with a nonempty finite vector (Xi)`
i=1 of nonempty

finite sets, and a vector of dispersions ([qxi/x′i ])
`
i=1 over those sets. As

might well be expected, we define a product of a vector of disper-
sions ([qxi/x′i ])

`
i=1 to be a product over (Xi)`

i=1 whose marginals are
([qxi/x′i ])

`
i=1.

However, keep in mind that the marginals of a product are unique
(by Remark 4.1) but that the product of ` dispersions might not be
unique (as illustrated by Section 4.6 of Streufert (2005)). This can be
surprisingly tricky to digest because ordinary probability distributions
are fundamentally different: there the ` marginals of a product distri-
bution are unique, and the product of ` distributions is unique. Thus,
a product distribution over ` variables is equivalent to its ` marginal
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distributions. Unfortunately, we don’t have that luxury here: marginal
dispersions are ambiguous.

5. Representation by Monomial Vectors

5.1. Theorem
In mathematics, a “monomial in the variable x” is an expression of

the form cxe, where the coefficient c is a real number and the exponent
e is a nonnegative integer. Here a monomial will refer to any expression
of the form cne, where c is a positive real number and e is an integer.

Consider a set Z. A vector [cznez ] of monomials over Z is said to
represent a table [qz/z′ ] over Z if

(∀z, z′) qz/z′ =





∞ if ez > ez′

cz/cz′ if ez = ez′

0 if ez < ez′



 .(15)

Streufert (2005, note 4) slightly modifies McLennan (1989b, page 147)
to show that a table over Z can be represented by a monomial vec-
tor [cznez ] iff it is a dispersion. Analogously, Streufert (2005, Theo-
rem 4.1) demonstrates that a table over X×Y can be represented by
some [cxnex·cyney ] iff it is a product over (X,Y ). The following theorem
extends this two-dimensional result to ` dimensions.

Theorem 5.1. Let [qx/x′ ] be a table over Π`
i=1Xi. Then (a) [qx/x′ ] is

represented by some [Π`
i=1cxin

exi ] iff (b) [qx/x′ ] is a product over (Xi)`
i=1.

Further, the marginals of the product represented by [Π`
i=1cxin

exi ] are
represented by ([cxin

exi ])`
i=1.

Proof. (a) implies (b) by Proof 5.2 (in the next subsection). The
converse holds by Proof 5.5 (this is the hard part: its derivation fills
Subsections 5.3, 5.4, and 5.5). Finally, the theorem’s second sentence
holds by Proof 5.6 (in Subsection 5.6). 2

Note that

(∀x) Π`
i=1cxin

exi = (Π`
i=1cxi)n

(Σ`
i=1exi ) ,

and thus by definition (15), statement (a) in Theorem 5.1 is equivalent
to the existence of ([cxi ])

`
i=1 and ([exi ])

`
i=1 such that

(∀x, x′) qx/x′ =





∞ if Σ`
i=1exi > Σ`

i=1ex′i
(Π`

i=1cxi)/(Π
`
i=1cx′i) if Σ`

i=1exi = Σ`
i=1ex′i

0 if Σ`
i=1exi < Σ`

i=1ex′i



 .(16)



14 STREUFERT

Appendix B notes that Theorem 5.1 is stronger than an analogous
result with real as opposed to integer exponents.

5.2. Proof of Theorem 5.1(a⇒b)
Proof 5.2. Suppose [qx/x′ ] satisfies (a), which by the observation at

(16) is equivalent to the existence of ([cxi ])
`
i=1 and ([exi ])

`
i=1 such that

(∀x, x′) qx/x′ =





∞ if Σ`
i=1exi > Σ`

i=1ex′i
(Π`

i=1cxi)/(Π
`
i=1cx′i) if Σ`

i=1exi = Σ`
i=1ex′i

0 if Σ`
i=1exi < Σ`

i=1ex′i



 .(17)

Our task is to show (b), which by definition (4) is equivalent to

(∀m)(∀σ)(∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj)m

j=0 .(18)

Accordingly, take any m, σ, and (xj)m
j=0. Note that

(∀i)(∀xi) |{ j | xσ,j
i =xi }|

=1 |{ j | xσi(j)
i =xi }|

=2 |{ j | xj
i=xi }| ,

where =1 holds by the definition of xσ,j and =2 holds by the fact that
σi is a permutation. This observation yields

(∀i) Πm
j=0cxσ,j

i
= Πm

j=0cxj
i

and

(∀i) Σm
j=0exσ,j

i
= Σm

j=0cxj
i

,

which in turn yields

Πm
j=0Π

`
i=1cxσ,j

i
= Πm

j=0Π
`
i=1cxj

i
and(19a)

Σm
j=0Σ

`
i=1exσ,j

i
= Σm

j=0Σ
`
i=1exj

i
.(19b)

First suppose that there is a term j such that Σ`
i=1exσ,j

i
> Σ`

i=1exj
i
.

Then (19b) implies there is another term j′ such that Σ`
i=1exσ,j′

i
<

Σ`
i=1exj′

i
. Hence by (17), qxσ,j/xj = ∞ and qxσ,j′/xj′ = 0. Thus, (18)

holds vacuously.
Second suppose that there is a term j such that Σ`

i=1exσ,j
i

< Σ`
i=1exj

i
.

Then, by an argument symmetric to that of the previous paragraph,
(18) holds vacuously.

Finally, suppose that every term j satisfies Σ`
i=1exσ,j

i
= Σ`

i=1exj
i
. Then

by (17), we have

(∀j) qxσ,j/xj = (Π`
i=1cxσ,j

i
)/(Π`

i=1cxj) .(20)
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Hence (18) holds by

�( qxσ,j/xj )m
j=0

=1 �( (Π`
i=1cxσ,j

i
)/(Π`

i=1cxj
i
) )m

j=0

=2 { Πm
j=0 (Π`

i=1cxσ,j
i

)/(Π`
i=1cxj

i
) }

=3 { (Πm
j=0Π

`
i=1cxσ,j

i
)/(Πm

j=0Π
`
i=1cxj

i
) }

=4 {1} ,

where =1 holds by (20), =2 holds by the definition of � and the fact
that every coefficient c is a positive real, =3 holds by algebra, and =4

holds by (19a). 2

5.3. An Outside Result
This and the next two subsections derive Theorem 5.1(b⇒a). These

three subsections are the heart of the paper.
This subsection’s Lemma 5.3 is used to derive exponents in the next

subsection. It concerns linear algebra. In particular, it states that
there is a solution to the system of linear inequalities and equalities
in (21) precisely when the rows used to define those inequalities and
equalities are “independent” in the sense of (22). This is analogous
to the high-school-level result which states that there is a solution to
Ax = b if the rows of A are independent in the usual sense.

The lemma is a very minor variation on Krantz, Luce, Suppes, and
Tversky (1971, Theorem 2.7). Since their proof depends only on high-
school-level results for systems of linear equalities, and since the proof
of Theorem 5.1 will depend only on their result, it is reasonable to say
that the mathematics underneath Theorem 5.1 is elementary.

Lemma 5.3. For any matrices P ∈ Qpk and A ∈ Qak, the following
are equivalent.

(∃w∈Zk) Pw � 0 and Aw = 0.(21)

Not (∃π∈Zp
+∼{0})(∃α∈Za) πT P + αT A = 0.(22)

(Q denotes the set of rationals, Z denotes the set of integers, and Pw �
0 means that every element of the vector Pw is positive.)

Proof. Take any such P and A. The equivalence of (21) and (22) is
equivalent to satisfying exactly one of the following.

(∃w∈Zk) Pw � 0 and Aw = 0.(23)

(∃π∈Zp
+∼{0})(∃α∈Za) πT P + αT A = 0.(24)
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Krantz, Luce, Suppes, and Tversky (1971, Theorem 2.7 on page 62
and the first two sentences on page 63) yields that exactly one of the
following must hold.

(∃w∈Qk) Pw � 0 and Aw = 0 .(25)

(∃π∈Qp
+∼{0})(∃α∈Qa) πT P + αT A = 0 and π·1 = 1 .(26)

This follows from their result by replacing their m′ with p, their m′′

with a,

their









α1

α2

...
αm′









with P , their









β1

β2

...
βm′′









with −A ,

their x with w, their λ with π, and their µ with α.
As discussed informally by Krantz, Luce, Suppes, and Tversky (1971,

page 63, sentences 3 through 6), (24) is equivalent to (26): (24) is im-
plied by (26) by multiplying π and α by the product of all the denom-
inators in these two vectors of rational numbers, and conversely, (24)
implies (26) by dividing both π and α by π·1. Similarly, (23) is equiv-
alent to (25): (23) is implied by (25) by multiplying w by the product
of all its denominators, and the converse is trivial since Z ⊆ Q. 2

5.4. The Derivation of Exponents ([exi ])
`
i=1

Take any product [qx/x′ ]. Then let � be the ordering defined by
x � x′ iff qx/x′ = ∞. The well-definition of � follows from the fact
that any product is a dispersion (by Remark 3.2) and from the fact
that a dispersion over X is equivalent to [1] the ordering � and [2] a
full-support probability distribution within each equivalence class of �
(by McLennan (1989b, page 147) as reformulated by Streufert (2005,
sentence containing note 4).

The following lemma uses the cancellation laws in the definition of
producthood to derive an additive representation for the ordering �.
Although the lemma’s proof relies on Lemma 5.3 alone, the idea of using
cancellation laws to derive an additive representation for an ordering
is due to Scott (1964). Further, Krantz, Luce, Suppes, and Tversky
(1971, Subsection 9.2) place Scott’s insight within a broader context.

Lemma 5.4. Suppose [qx/x′ ] is a product over (Xi)`
i=1. Then there

exist integers ([exi ])
`
i=1 such that (∀x, x′) x � x′ iff Σ`

i=1exi ≥ Σ`
i=1ex′i.
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Proof. We begin with three simple observations about �. First, as
with any dispersion, reciprocity (8) yields that the ordering � satisfies

qx/x′ = ∞ iff x � x′

qx/x′ ∈ (0,∞) iff x ≈ x′

qx/x′ = 0 iff x ≺ x′

for any x and x′. Second, the set ≈ is nonempty since it must contain
all x/x′ for which x = x′. And third, we may assume that the set �
is nonempty, for if � were empty, this lemma’s conclusion could be
immediately derived by setting ([exi ])

`
i=1 to zero.

Notation. The following five paragraphs will construct a large matrix
equation. The notation is daunting.

To begin, note that for any x, we can define the giant row vector
1x ∈ {0, 1}

S`
i=1Xi in the following fashion: first fix x = x1x2... xn, sec-

ond construct the unit row vector 1xi ∈ {0, 1}Xi in each dimension i,
and third concatenate these row vectors across the ` dimensions to ar-
rive at the giant row vector 1x = 1x11x2 ... 1x` ∈ {0, 1}

S`
i=1Xi . For exam-

ple, if X1 = {F,G, H} and X2 = {f, g}, then 1Ff = 1F 1f = [1 0 0 1 0]
because 1F = [1 0 0] and 1f = [1 0].

We will now construct a matrix P whose rows are indexed by the
elements of � and whose columns are indexed by the elements of
⋃`

i=1Xi. This matrix P is defined by stating that the row indexed
by x/x′ ∈ � is 1x−1x′ ∈ {0, 1}

S`
i=1Xi . For example, if Ff/Fg ∈ �

then the row of P indexed by Ff/Fg equals 1Ff−1Fg, which equals
[1 0 0 1 0]− [1 0 0 0 1], which works out to [0 0 0 1 −1].

Similarly, we will construct a matrix A whose rows are indexed by
the elements of ≈. This matrix A is defined by stating that the row
indexed by x/x′ ∈ ≈ is 1x−1x′ ∈ {0, 1}

S`
i=1Xi . For example, if Fg/Fg

is an element of ≈ (which must be the case), then the row of A indexed
by Fg/Fg equals [0 0 0 0 0].

Now consider multiplying each row of P by a nonnegative integer and
then adding up all these multiplied rows. That is, consider π ∈ Z�+ and
πT P ∈ Z

S`
i=1Xi (here πT denotes the transpose of the column vector π).

To make sure you’re with me, πx/x′ = 14 means implicitly that x/x′ is
an element of � (else there is would be no row of P indexed by x/x′)
and means explicitly that the sum πT P includes 14 copies of the row
of P indexed by x/x′.
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Similarly, consider multiplying each row of A by an integer and
then adding up all its multiplied rows. That is, consider α ∈ Z≈ and
αT A ∈ Z

S`
i=1Xi . Note that the multipliers in α can be negative (in

contrast to the multipliers in π, which cannot be negative).

Apply Producthood. This and the next four paragraphs will use the
producthood of [qx/x′ ] to show that the rows of P and A are “indepen-
dent” in the sense of (22). In particular, it will be shown that there
cannot be a π ∈ Z�+∼{0} and an α ∈ Z≈ such that πT P + αT A = 0.
In order to prove this by contradiction, suppose there were such a π
and α.

To address the unfortunate fact that α might contain negative ele-
ments, define the vector α̂ ∈ Z≈+ by

α̂x/x′ =
(

αx/x′−αx′/x if αx/x′ ≥ αx′/x

0 if αx/x′ < αx′/x

)

.(28)

We will see that

αT A = Σx/x′∈≈αx/x′(1x−1x′)(29)

= Σx/x′∈(=)αx/x′(1x−1x′) + Σx/x′∈(≈∼=)αx/x′(1x−1x′)

= Σx/x′∈(=)α̂x/x′(1x−1x′) + Σx/x′∈(≈∼=)α̂x/x′(1x−1x′)

= Σx/x′∈≈α̂x/x′(1x−1x′)

= α̂T A .

Consider the third equality (the others are obvious). Here the first sum
is zero regardless of the multipliers because x = x′ yields that 1x−1x′

is the zero vector. Further, the indices in the second sum come in pairs
because ≈ is an equivalence relation, and the sum over any such pair
is

αx/x′(1x−1x′) + αx′/x(1x′−1x)

=1 αx/x′(1x−1x′)− αx′/x(1x−1x′)

=2 (αx/x′−αx′/x)(1x−1x′)

=3 (α̂x/x′−α̂x′/x)(1x−1x′)

=4 α̂x/x′(1x−1x′)− α̂x′/x(1x−1x′)

=5 α̂x/x′(1x−1x′) + α̂x′/x(1x′−1x) ,

where =3 holds by definition (28). Hence αT A = α̂T A, and conse-
quently, πT P + α̂T A = 0. The next three paragraphs will argue that
this equality leads to a contradiction.
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We now construct an indexed set of elements from � and ≈. This
indexed set will be denoted {xk/x′k}π·1+α̂·1

k=1 (here π·1 is the dot product
yielding the sum of all the multipliers for elements of � and α̂·1 is the
sum of all the multipliers for elements of ≈). Construct this indexed
set so that each element x/x′ of � appears πx/x′ times in the first π·1
elements of the set, and so that each element x/x′ of ≈ appears α̂x/x′

times in the remaining α̂·1 elements of the set.
This paragraph’s conclusion will contradict the next paragraph’s con-

clusion. Note that for each k ∈ {1, 2, ...π·1}, we have that xk/x′k ∈ �
and hence that qxk/x′k = ∞. Further, there must be at least one such i
because π 6= 0 by assumption (in the first paragraph under “Applying
Producthood”). Similarly, for each k ∈ {π·1+1, π·1+2, ... π·1+α̂·1},
we have that xk/x′k ∈ ≈ and hence that qxk/x′k ∈ (0,∞). Hence, it
must be the case that �π·1+α̂·1

k=1 qxk/x′k = {∞}.
On the other hand, there might be some potential for cancellation

within the expression �π·1+α̂·1
k=1 qxk/x′k . In fact, there’s a lot of it. The

construction of the indexed set {xk/x′k}π·1+α̂·1
k=1 two paragraphs ago

yields that

Σπ·1+α̂·1
k=1 (1xk−1x′k) = πT P + α̂T A .

Hence, the equality πT P + α̂T A = 0 is equivalent to

Σπ·1+α̂·1
k=1 (1xk−1x′k) = 0 .(30)

This is a row-vector equation in |
⋃`

i=1Xi| dimensions, and each of its
columns corresponds to some xi in some dimension i. Hence, the equa-
tion is equivalent to

(∀i)(∀xi) Σπ·1+α̂·1
k=1 1(xi=xk

i )− 1(xi=x′ki ) = 0 ,

where 1(·) is the indicator function assuming a value of 1 if its argument
is true and 0 if its argument is false. Consider any i and xi. The term
1(xi=xk

i ) is 1 precisely when xi appears in the numerator of xk/x′k, and
the term 1(xi=x′ki ) is 1 precisely when xi appears in the denominator of
xk/x′k. Accordingly, the above equation holds at xi precisely when xi

appears in the numerators of {xk/x′k}π·1+α̂·1
k=1 as often as it appears in the

denominators of {xk/x′k}π·1+α̂·1
k=1 . Since this holds for all xi, there must

be a permutation σi such that (∀k) xk
i = (x′)σi(k)

i . Further, since this
holds for all i, there exists a permutation vector σ such that (∀k) xk =
(x′)σ,k. This equality and producthood yield

�π·1+α̂·1
k=1 qxk/x′k = �π·1+α̂·1

k=1 q(x′)σ,k/x′k 3 1.(31)
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This contradicts the conclusion of the previous paragraph.

Applying Lemma 5.3. Now consider Lemma 5.3 applied at this P
and A (note that its p is |�|, its a is |≈|, and its k is |

⋃`
i=1Xi|).

The preceding five paragraphs have shown that the rows of P and A
are “independent” in the sense of (22). Hence Lemma 5.3 yields the
existence of some w ∈ Z|

S`
i=1Xi| such that Pw � 0 and Aw = 0. Define

the exponents ([exi ])
`
i=1 by setting

[ex1 ][ex2 ]... [ex` ] = w ,

where [ex1 ][ex2 ]... [ex` ] is the giant column vector obtained by concate-
nating the vectors in ([exi ])

`
i=1.

If x′′ � x′, then the vector inequality Pw � 0 at the row indexed by
x′′/x′ ∈ � is equivalent to

(1x′′−1x′)([ex1 ][ex2 ]... [ex` ]) > 0 ,

which is equivalent to Σ`
i=1ex′′i > Σ`

i=1ex′i . Similarly, if x′′ ≈ x′, then the
vector equality Aw = 0 at the row indexed by x′′/x′ ∈ ≈ is equivalent
to

(1x′′−1x′)([ex1 ][ex2 ]... [ex` ]) = 0 ,

which is equivalent to Σ`
i=1ex′′i = Σ`

i=1ex′i . In summary, x′′ � x′ implies
Σ`

i=1ex′′i > Σ`
i=1ex′i , and x′′ ≈ x′ implies Σ`

i=1ex′′i = Σ`
i=1ex′i .

These two facts directly yield that x � x′ implies Σ`
i=1exi ≥ Σ`

i=1ex′i .
Conversely, not x � x′ implies x ≺ x′ by the completeness of �, which
implies Σ`

i=1exi < Σ`
i=1ex′i by the first of the last paragraph’s facts,

which implies not Σ`
i=1exi ≥ Σ`

i=1ex′i . Therefore, x � x′ if and only if
Σ`

i=1exi ≥ Σ`
i=1ex′i . 2

5.5. Deriving Coefficients ([cxi ])
`
i=1.

Theorem 5.1(b⇒a) can now be proven by citing Lemma 5.4 to obtain
exponents, and then working to derive the coefficients.

Proof 5.5 (for Theorem 5.1(b⇒a)). Take any product [qx/x′ ]. Our
task is to show that [qx/x′ ] is represented by some [Π`

i=1cxin
exi ]. By

the observation at (16), this means that we are to find ([exi ])
`
i=1 and

([cxi ])
`
i=1 such that

(∀x, x′) qx/x′ =





∞ if Σ`
i=1exi > Σ`

i=1ex′i
(Π`

i=1cxi)/(Π
`
i=1cx′i) if Σ`

i=1exi = Σ`
i=1ex′i

0 if Σ`
i=1exi < Σ`

i=1ex′i



 .
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By Lemma 5.4, and by the definition of � at the start of Subsection 5.4,
we have ([exi ])

`
i=1 such that

qx/x′ = ∞ iff x � x′ iff Σ`
i=1exi > Σ`

i=1ex′i(32a)

qx/x′ ∈ (0,∞) iff x ≈ x′ iff Σ`
i=1exi = Σ`

i=1ex′i(32b)

qx/x′ = 0 iff x ≺ x′ iff Σ`
i=1exi < Σ`

i=1ex′i .(32c)

Thus it remains to find (positive) coefficients ([cxi ])
`
i=1 such that

(∀x/x′∈≈) (Π`
i=1cxi)/(Π

`
i=1cx′i) = qx/x′ .

Since (32b) yields the critical fact that qx/x′ ∈ (0,∞) for every x/x′ in
≈, this is equivalent to finding real numbers ([dxi ])

`
i=1 such that

(∀x/x′∈≈) Σ`
i=1dxi − Σ`

i=1dx′i = ln(qx/x′) .

Applying Linear Algebra. As in the proof of Lemma 5.4 in the pre-
vious subsection, we can define for any x = x1x2... x` the giant row
vector 1x = 1x11x2 ... 1x` ∈ {0, 1}

S`
i=1Xi by concatenating the unit vec-

tors (1xi)
`
i=1 across i. Using this notation, the system becomes

(∀x/x′∈≈) (1x−1x′)d = ln(qx/x′) ,

where d is the giant column vector d = [dx1 ][dx2 ]... [dx` ] obtained by
concatenating together the variables ([dxi ])

`
i=1. Notice that this is a

matrix equation of the form Ad = b, in which row x/x′ of the coefficient
matrix A is 1x−1x′ and element x/x′ in the vector b is ln(qx/x′).

Recall from elementary linear algebra that Gaussian elimination is
equivalent to premultiplying the augmented matrix [A b] with a certain
square matrix E which replicates the elementary row operations and
row permutations. Further recall that back substitution then reveals
a solution to Ad = b provided that E[Ab] does not contain a row
which is zero in all but the last column (see for example Strang (1980,
Chapter 1)). In the present circumstance, E has only rational elements
because the coefficient matrix A has only rational elements. As a result,
each row in E[Ab] can be written as

[ Σx/x′∈≈ax/x′(1x−1x′) Σx/x′∈≈ax/x′ ln(qx/x′) ]

for some rational vector (ax/x′)x/x′∈≈ equal to a row of E. Thus E[Ab]
does not have a row in which all but the last column is zero if

Σx/x′∈≈ax/x′(1x−1x′) = 0 implies Σx/x′∈≈ax/x′ ln(qx/x′) = 0(33)

for all rational vectors (ax/x′)x/x′∈≈. We will establish this conditional
to complete the proof.
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To set the argument up, note that statement (33) holds if

Σx/x′∈≈αx/x′(1x−1x′) = 0 implies Σx/x′∈≈αx/x′ ln(qx/x′) = 0(34)

for all integer vectors (αx/x′)x/x′∈≈ (to see the contrapositive of this
claim, note that if (ax/x′)x/x′∈≈ violates (33) then some multiple of
(ax/x′)x/x′∈≈ containing only integers violates (34)). Accordingly, as-
sume the row-vector equation

Σx/x′∈≈αx/x′(1x−1x′) = 0(35)

for some integer vector (αx/x′)x/x′∈≈. The remainder of this proof will
then establish the scalar equation

Σx/x′∈≈αx/x′ ln(qx/x′) = 0 .(36)

Applying Producthood. The assumption (35) is the same as αT A = 0,
where α is the integer vector (αx/x′)x/x′∈≈ and A is the matrix whose
rows are indexed by the elements of ≈ and whose row at x/x′ is 1x−1x′

(as under “Notation” in the last subsection). To address the unfortu-
nate fact that some elements of α may be negative, define α̂ by

α̂x/x′ =
(

αx/x′ − αx′/x if αx/x′ ≥ αx′/x

αx′/x − αx/x′ if αx/x′ < αx/x′

)

.(37)

As at (29), α̂T A = αT A, and hence the assumption αT A = 0 implies
α̂T A = 0.

Further, as in the paragraph after (29), we can construct an indexed
set {xk/x′k}α̂·1

k=1 assigning elements of ≈ so that each element xk/x′k

of ≈ is assigned exactly α̂x/x′ times. The assumption α̂T A = 0 is
then equivalent to Σα̂·1

k=1(1xk−1x′k) = 0. As in the seven sentences after
(30), this implies the existence of a permutation vector σ such that
(∀k) xk = (x′)σ,k. This and producthood yield that

�α̂·1
k=1qxk/x′k = �α̂·1

k=1q(x′)σ,k/x′k 3 1 .

By (32b), this is equivalent to

Πα̂·1
k=1qxk/x′k = 1 ,

which is equivalent to

Σα̂·1
k=1ln(qxk/x′k) = 0 ,

which by the definition of (xk/x′k)α̂·1
k=1 is equivalent to

Σx/x′∈≈α̂x/x′ ln(qx/x′) = 0 .
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It only remains to show that the above equation is equivalent to (36).
This paragraph accomplishes that by deriving

Σx/x′∈≈α̂x/x′ ln(qx/x′)

= Σx/x′∈(=)α̂x/x′ ln(qx/x′) + Σx/x′∈(≈∼=)α̂x/x′ ln(qx/x′)

= Σx/x′∈(=)αx/x′ ln(qx/x′) + Σx/x′∈(≈∼=)αx/x′ ln(qx/x′)

= Σx/x′∈≈αx/x′ ln(qx/x′) .

Consider the second equality (the others are obvious). Here the first
sum is zero because x = x′ yields ln(qx/x′) = ln(1) = 0 by unit diago-
nality (6). Further, the indices in the second sum come in pairs because
≈ is an equivalence relation and the sum over any such pair is

α̂x/x′ ln(qx/x′) + α̂x′/xln(qx′/x)

=1 α̂x/x′ ln(qx/x′)− α̂x′/xln(qx/x′)

=2 (α̂x/x′ − α̂x′/x)ln(qx/x′)

=3 (αx/x′ − αx′/x)ln(qx/x′)

=4 αx/x′ ln(qx/x′)− αx′/xln(qx/x′)

=5 αx/x′ ln(qx/x′) + αx′/xln(qx′/x) ,

where =3 holds by (37) and =1 and =5 hold by reciprocity (8). 2

5.6. Representation of Marginals

Proof 5.6 (of Theorem 5.1’s sentence about marginals). Let [qx/x′ ]
be the product represented by [Π`

i=1cxin
exi ]. Fix any x?, and consider

any i.
First, by Remark 4.1, the marginal with respect to xi is [qxix?

−i/x′ix
?
−i

].
Second, since [qxix?

−i/x′ix
?
−i

] is a restriction of [qx/x′ ] and since all of [qx/x′ ]
is represented by [Π`

k=1cxkn
exk ], we have that [qxix?

−i/x′ix
?
−i

] is represented
by [cxin

exi ](Πk 6=icx?
k
nex?

k ). The last two sentences together yield that the
marginal with respect to xi is represented by [cxin

exi ](Πk 6=icx?
k
nex?

k ).
Note that (Πk 6=icx?

k
nex?

k ) is constant with respect to xi. Also note
that the definition (15) of representation depends only on the ratio
between monomials. The last three sentences together yield that the
marginal with respect to xi is represented by [cxin

exi ]. 2
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6. A Little Topology

6.1. ∆· (Xi)`
i=1 is Compact

Up until now, the paper has been purely algebraic. Now put the
usual topology on [0,∞] and the corresponding product topology on
any (finite) product of [0,∞] with itself.

Theorem 6.1. Take any (Xi)`
i=1 and let X=Π`

i=1Xi. Then ∆· (Xi)`
i=1

is a compact subset of [0,∞]X2.

The theorem’s proof comes after the following lemma.

Lemma 6.2. Let 〈(un
j )m

j=0〉n be a sequence of vectors in [0,∞]1+m

which converges to the vector (u?
j)

m
j=0. If each vector in the sequence

satisfies 1 ∈ �(un
j )m

j=0 then the limit vector satisfies 1 ∈ �(u?
j)

m
j=0.

Proof. Take any sequence 〈(un
j )m

j=0〉n converging to (u?
j)

m
j=0. We will

derive the conditional in the lemma’s second sentence in each of four
cases:

Case (∃j)u?
j=0 (∃j)u?

j=∞
1 true true
2 false true
3 true false
4 false false

Case 1. Throughout this case, the conditional’s conclusion is true
because �(u?

j)
m
j=0 = [0,∞].

Case 2. Throughout this case the conditional’s assumption is false.
Specifically, since all of the dimensions j converge to a positive number,
there is some positive v and some index n0 such that

(∀n>n0)(∀j) un
j > v .(38)

Then let j∞ denote a dimension in which u?
j∞ = ∞ and note that there

exists some index n∞ > n0 such that

(∀n>n∞) un
j∞ > (1/v)m .(39)

Together (38) and (39) yield

(∀n>n∞) Πm
j=0u

n
j = un

j∞ ·Πj 6=j∞un
j > (1/v)mvm = 1

(all products are well-defined since all terms are positive). In casual
terms, the product of a vector in the sequence is ultimately greater
than one. Thus, it is cannot the case that all vectors in the sequence
satisfy 1 ∈ �(un

j )m
j=0 (in fact, no more than a finite number of them

can).
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Case 3. This case is symmetric to Case 2: the conditional’s assump-
tion is always false because the product of a vector in the sequence is
ultimately less than one.

Case 4. Since 〈(un
j )m

j=0〉n converges to a finite vector, there is some
n0 after which every vector un

j is in ordinary Euclidean space R1+m.
The lemma’s conditional then follows from the algebra of limits (that
is, from Rudin (1976) Theorem 3.3(c)). In particular, the conditional’s
assumption implies (∀n>n0) 1 = Πm

j=0u
n
j which implies 1 = Πm

j=0u
?
j

which implies the conditional’s conclusion. 2

Proof of Theorem 6.1. Since [0,∞]X2 is compact, we need only show
that ∆· (Xi)`

i=1 is closed. Accordingly, take any sequence 〈[qn
x/x′ ]〉n in

∆· (Xi)`
i=1 which converges to some [q?

x/x′ ]. Our task is to show that
[q?

x/x′ ] is in ∆· (Xi)`
i=1. In other words, by definition (4), our task is to

show

(∀m)(∀σ)(∀(xj)m
j=0) 1 ∈ �(q?

xσ,j/xj)m
j=0 .

Accordingly, fix any order m, any permutation vector σ, and any in-
stance (xj)m

j=0. Our task is to show

1 ∈ �(q?
xσ,j/xj)m

j=0 .(40)

Since each [qn
x/x′ ] is in ∆· (Xi)`

i=1 by assumption, the definition (4)
gives us that

1 ∈ �(qn
xσ,j/xj)m

j=0 .

Hence Lemma 6.2 applied at 〈(un
j )m

j=0〉n = 〈(qn
xσ,j/xj)m

j=0〉n and (u?
j)

m
j=0 =

q?
xσ,j/xj yields (40). �

6.2. Positive Products
A positive product is an element of the set ∆· ◦(Xi)`

i=1 defined by

{ [qx/x′ ] ∈ ∆· (Xi)`
i=1 | (∀x, x′) qx/x′ ∈ (0,∞) } .(41)

By reciprocity (8), the restriction (∀x, x′) qx/x′ ∈ (0,∞) is equivalent
to both (∀x, x′) qx/x′ ∈ (0,∞] and (∀x, x′) qx/x′ ∈ [0,∞). Accordingly,
“positive products,” “finite products,” and “positive finite products”
are all synonymous.

Remark 6.3. ∆· (Xi)`
i=1 is the closure of ∆· ◦(Xi)`

i=1.

Proof. ⊇. ∆· (Xi)`
i=1 contains the closure of ∆· ◦(Xi)`

i=1 since ∆· (Xi)`
i=1

contains ∆· ◦(Xi)`
i=1 by definition (41) and since ∆· (Xi)`

i=1 is compact by
Theorem 6.1.
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⊆. Take any [qx/x′ ] in ∆· (Xi)`
i=1. By Theorem 5.1(b⇒a) and the

observation at (16), there exist ([cxi ])
`
i=1 and ([exi ])

`
i=1 such that

(∀x, x′) qx/x′ =





∞ if Σ`
n=1exi > Σ`

n=1ex′i
(Π`

n=1cxi)/(Π
`
n=1cx′i) if Σ`

n=1exi = Σ`
n=1ex′i

0 if Σ`
n=1exi < Σ`

n=1ex′i



 .

Hence

(∀x, x′) qx/x′ = limn→∞
(Π`

n=1cxi)n
Σ`

n=1exi

(Π`
n=1cx′i)n

Σ`
n=1ex′i

.(42)

Now define 〈[qn
x/x′ ]〉n by

(∀n)(∀x, x′) qn
x/x′ =

Π`
n=1cxin

exi

Π`
n=1cx′in

ex′i
.

First note that 〈[qn
x/x′ ]〉n converges to [qx/x′ ] by (42). Second note that

every [qn
x/x′ ] is in ∆· ◦(Xi)`

i=1 because every relative probability qn
x/x′ is

positive and because all the cancellation laws in the definition (4) of
∆· (Xi)`

i=1 are satisfied by ordinary real algebra. These two observations
yield that [qx/x′ ] is in the closure of ∆· ◦(Xi)`

i=1. 2

Remark 6.3 is equivalent to a reformulation of Theorem 2.10 in
Kohlberg and Reny (1997), which shows that a type of acyclicity is
equivalent to their concept of strong independence. Specificially, their
acyclicity is equivalent to producthood by Streufert (2003, Remark
B.6(a⇔aKR)), and their strong independence is equivalent to mem-
bership in the closure of the set of positive products because there is
a one-to-one correspondence between the set of positive products and
the set of ordinary, full-support, product distributions. This result of
Kohlberg and Reny (1997) appears to be the closest predecessor of any
of this paper’s results.

Appendix A. ∆· is Not an Iterated Binary Operation

A.1. Overview
This appendix demonstrates that `-dimensional producthood is more

restrictive than `−1 iterative applications of 2-dimensional product-
hood. In this sense, `-dimensional producthood is more restrictive
than one might guess.

To make these observations concrete, we require temporary notation
for a binary operation ⊗. There are two steps. First, let [qy/y′ ]⊗[qz/z′ ]
denote the set of all products of some table [qy/y′ ] over some set Y with
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some table [qz/z′ ] over some set Z. In other words, let [qy/y′ ]⊗[qz/z′ ]
be the set of all products over (Y, Z) that have marginals [qy/y′ ] and
[qz/z′ ]. To exercise this first definition, note that [qy/y′ ]⊗[qz/z′ ] typi-
cally has many elements (because marginals are ambiguous), and that
[qy/y′ ]⊗[qz/z′ ] is empty if either [qx/x′ ] or [qy/y′ ] is not a dispersion (be-
cause marginals are dispersions by definition).

Second, for any set QY of tables [qy/y′ ] over Y , and for any set QZ

of tables [qz/z′ ] over Z, let QY⊗QZ be the set of all products of some
table in QY with some table in QZ . To exercise this second definition,
note that

(∀X1, X2) ∆· (X1, X2) = ∆· (X1)⊗∆· (X2)(43)

because marginals are dispersions by definition.
Surprisingly, Remark A.1 shows that

(∀X1, X2, X3) ∆· (X1, X2, X3) = ∆· (X1)⊗(∆· (X2)⊗∆· (X3))

is false. Rather, ∆· (X1, X2, X3) is a subset, and typically a strict sub-
set, of ∆· (X1)⊗(∆· (X2)⊗∆· (X3)). In this precise sense, producthood
over ` dimensions is more restrictive than `−1 iterative applications of
producthood over 2 dimensions.

To appreciate this intuitively, recall that an element of ∆· (X1, X2, X3)
must satisfy the cancellation laws for all permutation vectors σ =
(σ1, σ2, σ3). Meanwhile, an element of ∆· (X1)⊗(∆· (X2)⊗∆· (X3)) must
satisfy this same cancellation condition for certain classes of permuta-
tion vectors: the outer ⊗ concerns vectors of the form

{ (σ1, σ2, σ3) | σ2 = σ3 } ,

and the inner ⊗ concerns vectors of the form

{ (σ1, σ2, σ3) | σ1 is the identity function } .

Since the class of all permutation vectors contains these two classes, the
set of tables obeying cancellation for all permutation vectors is a subset,
and typically a strict subset, of the set of tables obeying cancellation
just within the two classes. Accordingly, ∆· (X1, X2, X3) is a subset, and
typically a strict subset, of ∆· (X1)⊗(∆· (X2)⊗∆· (X3)).

A.2. Details
Remark A.1.

(a) (∀X1, X2, X3) ∆· (X1, X2, X3) ⊆ ∆· (X1)⊗(∆· (X2)⊗∆· (X3)) and

(b) not (∀X1, X2, X3) ∆· (X1, X2, X3) ⊇ ∆· (X1)⊗(∆· (X2)⊗∆· (X3)) .
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Proof. (a) Take any [qx/x′ ] in ∆· (X1, X2, X3), and for future use, fix
any x? ∈ X. First, the definition (4) of ∆· (X1, X2, X3) implies that
[qx/x′ ] satisfies

(∀m)(∀σ)
(

σ2=σ3 implies (∀(xj)m
j=0) 1 ∈ �(qxσ,j/xj )m

j=0

)

,

which is equivalent to [qx/x′ ] ∈ ∆· (X1, X2×X3). Thus by the definition
of ⊗ and the second sentence of Remark 4.1, we have that

[qx/x′ ] ∈ {[qx1x?
2x?

3/x′1x?
2x?

3
]}⊗{[qx?

1x2x3/x?
1x′2x′3 ]} .

But this is more than we need: it suffices to remember that

[qx/x′ ] ∈ ∆· (X1)⊗{[qx?
1x2x3/x?

1x′2x′3 ]} .(44)

Second, the definition (4) of ∆· (X1, X2, X3) also implies that [qx?
1x2x3/x?

1x′2x′3 ]
satisfies

(∀m)(∀σ2, σ3)(∀(xj
2, x

j
3)

m
j=1) 1 ∈ �(q

x?
1xσ2(j)

2 xσ3(j)
3 /x?

1xj
2xj

3
)m
j=1 ,

which is equivalent to [qx?
1x2x3/x?

1x′2x′3 ] ∈ ∆· (X2, X3), which by (43) is
equivalent to

[qx?
1x2x3/x?

1x′2x′3 ] ∈ ∆· (X2)⊗∆· (X3) .(45)

(44) and (45) together yield that [qx/x′ ] ∈ ∆· (X1)⊗(∆· (X2)⊗∆· (X3)).

(b) The remainder of the proof exhibits an example which falls out-
side of ∆· (X1, X2, X3) but inside of ∆· (X1)⊗(∆· (X2)⊗∆· (X3)). Suppose
that X1 = {L,R}, X2 = {A,B}, and X3 = {a, b}, and consider the
following table over X1×X2×X3.

[qx/x′ ] =

RBb 0 0 0 0 0 0 0 1
RBa 0 0 0 1 0 1 1 ∞
RAb 0 0 0 1 0 1 1 ∞
RAa 0 ∞ ∞ ∞ 1 ∞ ∞ ∞
LBb 0 0 0 1 0 1 1 ∞
LBa 0 1 1 ∞ 0 ∞ ∞ ∞
LAb 0 1 1 ∞ 0 ∞ ∞ ∞
LAa 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞

LAa LAb LBa LBb RAa RAb RBa RBb

.

This [qx/x′ ] does not belong to ∆· (X1, X2, X3). Specifically, if it were an
element of ∆· (X1, X2, X3), it would satisfy the following instance of a
second-order cancellation law,

1 ∈ �{qRAb/LBb, qLAb/RAa, qLBa/LAb}
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(cancel terms to verify that suitable permutations exist). Yet, this
product actually works out to

�{qRAb/LBb, qLAb/RAa, qLBa/LAb} = �{1,∞, 1} = {∞} .

On the other hand, note that [qLx2x3/Lx′2x′3 ] (that is, the southwest
quadrant of [qx/x′ ]) is represented by the product

b n−1 1
a n−2 n−1

A B

of two monomial vectors. Hence by Theorem 5.1(a⇒b), [qLx2x3/Lx′2x′3 ]
is a product of some dispersion over X2 and some dispersion over X3.
In brief,

[qLx2x3/Lx′2x′3 ] ∈ ∆· (X2)⊗∆· (X3) .(46)

Further, [qx/x′ ] itself is represented by

R n−3 n−1 n−1 1
L n−4 n−2 n−2 n−1

Aa Ab Ba Bb
,

which is the product of a monomial vector over X1 = {L, R} and
a monomial vector which represents [qLx2x3/Lx′2x′3 ]. Hence by Theo-
rem 5.1(a⇒b), [qx/x′ ] is a product of some dispersion over X1 and
[qLx2x3/Lx′2x′3 ]. In brief,

[qx/x′ ] ∈ ∆· (X1)⊗{[qLx2x3/Lx′2x′3 ]} .(47)

(46) and (47) together imply that [qx/x′ ] ∈ ∆· (X1)⊗(∆· (X2)⊗∆· (X3)).
2

Appendix B. Real Exponents

Throughout the paper, the symbol e assumes integer values, and ac-
cordingly, Theorem 5.1 characterizes producthood by means of mono-
mials with integer exponents. This appendix notes that this result for
integer exponents is stronger than an analogous result for real expo-
nents. In particular, Corollary B.1 follows from Theorem 5.1 and two
components of its proof. Here ė denotes a real number, and accordingly,
monomials with real exponents have the form cnė.

Corollary B.1. Let [qx/x′ ] be a table over Π`
i=1Xi. Then (ȧ) [qx/x′ ]

is represented by some [Π`
i=1cxin

ėxi ] iff (b) [qx/x′ ] is a product over
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(Xi)`
i=1. Furthermore, the marginals of the product represented by

[Π`
i=1cxin

ėxi ] are represented by ([cxin
ėxi ])`

i=1.

Proof. (ȧ) implies (b) by Proof 5.2 after replacing (a) with (ȧ) and
e with ė. The converse holds by Theorem 5.1(b⇒a) together with
the obvious fact that (a) implies (ȧ). The corollary’s second sentence
follows from Proof 5.6 after replacing e with ė. 2

Corollary B.1 is strictly weaker than Theorem 5.1 to the extent that
it derives real but not necessarily integer exponents.
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