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Optimal Mechanism for Selling Two Goods∗

Gregory Pavlov

Abstract

We solve for the optimal mechanism for selling two goods when the buyer’s demand charac-
teristics are unobservable. In the case of substitutable goods, the seller has an incentive to offer
lotteries over goods in order to charge the buyers with large differences in the valuations a higher
price for obtaining their desired good with certainty. However, the seller also has a countervail-
ing incentive to make the allocation of the goods among the participating buyers more efficient in
order to increase the overall demand. In the case when the buyer can consume both goods, the
seller has an incentive to underprovide one of the goods in order to charge the buyers with large
valuations a higher price for the bundle of both goods. As in the case of substitutable goods, the
seller also has a countervailing incentive to lower the price of the bundle in order to increase the
overall demand.
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1 Introduction

In this paper we solve for the optimal strategy for selling two heterogeneous goods

when the buyer’s demand characteristics are unobservable. While it is well known

that the optimal strategy for selling a single good is to post a “take-it-or-leave-it”

price (Riley and Zeckhauser, 1983), solving for the case of several goods proved

to be much harder because of the multidimensional nature of the problem.
1
The

main insights into economics of multiproduct price discrimination are the follow-

ing: (i) the seller generally benefits from excluding a subset of the buyer’s types

from purchasing any goods (Armstrong, 1996); (ii) the seller generally benefits

from offering bundles of goods at a discount in addition to the individually priced

goods (Adams and Yellen, 1976; McAfee et al., 1989); and (iii) unlike in the case of

a single good, the seller often benefits from using lotteries as a part of the optimal

selling mechanism (Thanassoulis, 2004; Manelli and Vincent, 2006, 2007).

We consider two different settings: the case of substitutable goods and the

case of indivisible goods. In the case of substitutable goods, the buyer can consume

only a single unit of a good, and thus it is never optimal to give the buyer a bundle of

two goods. The optimal mechanism in this case is a result of the interplay between

the optimal use of stochastic contracts and the incentive to exclude some buyers. In

the case of indivisible goods, the buyer can consume both goods, and the optimal

mechanism is a result of the interplay between all three tools of multiproduct price

discrimination: exclusion, bundling, and stochastic contracts.

The starting point of our analysis of the model of substitutable goods is the

result in Pavlov (2010) that says there is no loss for the seller in optimizing over

mechanisms where the buyer either gets a good for sure or gets no good.
2
In the for-

mer case, however, the seller may find it optimal to provide lotteries that determine

whether the buyer receives the first good or the second good. Thus, each buyer who

decides not to choose the null option is guaranteed to get at least the less desirable

good of the two available. The willingness to pay for getting the more desirable

good is the difference in the buyer’s valuations between the two goods, which be-

comes a natural screening variable in the seller’s problem. Note that it is efficient to

assign to each type of buyer his most preferred good with certainty. However, the

seller is inclined to assign lotteries to the buyers with small differences in the valu-

ations in order to charge the buyers with large differences in the valuations a higher

price for the option of getting their most preferred good with certainty. This is not

1
See Rochet and Stole (2003) for a survey of recent literature.

2
This property can be viewed as a natural extension of the “no-haggling” result of Riley and

Zeckhauser (1983) to the case of multiple goods.
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the end of the story, however, because the offered menu of options determines the

size and shape of the exclusion region. Other things being equal, the share of the

participating types is larger if the buyer receives his most preferred good with cer-

tainty rather than some lottery. Hence, the seller’s incentive to use lotteries in order

to extract extra payments from the buyer’s types with high differences in the valua-

tions comes into conflict with an incentive to make the allocation more efficient in

order to expand the share of participating types. We explicitly calculate the optimal

selling mechanism when the buyer’s types are uniformly distributed on a square,

and we discuss how the seller’s conflicting incentives are resolved depending on

the support of the distribution.

In the model of indivisible goods, the seller can optimize over mechanisms

in which the buyer either gets no goods or gets the more preferred good for sure

and the less preferred good with some probability (Pavlov, 2010). Therefore, the

probability of assigning the less preferred good becomes a natural screening vari-

able among the participating buyer’s types. Note that it is efficient to assign the

bundle of both goods to each type of buyer who chooses to participate. However,

the seller is inclined to reduce the assignment of the less preferred good for some

of the buyer’s types in order to charge a higher price for the bundle. As in the

model of substitutable goods, the seller’s desire to price discriminate is mitigated

by an incentive to improve the overall efficiency of the allocation by offering just

the bundle of two goods at a reduced price in order to raise the overall demand.

We explicitly calculate the optimal selling mechanism when the buyer’s types are

uniformly distributed on a square and discuss how the seller’s conflicting incentives

are resolved, depending on the parameters.

The rest of the paper is organized as follows. The model is presented in

Section 2. The analyses of the case of substitutable goods and the case of indivisible

goods are in Section 3 and 4, respectively. Conclusion is in Section 5. Long proofs

and calculations for examples are in the Appendix.

2 Model

There is one buyer and one seller who owns two indivisible goods.
3
The buyer

values good i at θ i, which is known only to him. A pair of valuations θ = (θ1,θ2)
is distributed according to an almost everywhere positive bounded differentiable

density f on the supportΘ= [θ
1
,θ1]× [θ

2
,θ2]⊂R

2

+. This distribution is common

knowledge.

3
Throughout the paper we use masculine pronouns for the buyer and feminine pronouns for the

seller.
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All players have linear utilities. The buyer’s utility is θ1p1+ θ2p2− T ,
where p = (p1, p2) is the vector of allocations of each of the goods, and T is his
payment to the seller. The seller’s utility is T .

We study the following two scenarios:

1. Substitutable goods (Thanassoulis, 2004; Balestrieri and Leao, 2008). The

buyer can consume just one unit of any good. In this case pi is the probability

that the buyer consumes good i, and the feasible set is

Σ=
{
p ∈ R

2

+ | p1+ p2 ≤ 1
}
.
4

2. Indivisible goods (McAfee andMcMillan, 1988; McAfee et al., 1989; Manelli

and Vincent, 2006, 2007). All goods are desirable from the point of view of

the buyer. In this case pi is the probability that the buyer gets good i, and the

feasible set is Σ=
{
p ∈ R

2

+ | 0≤ p1, p2 ≤ 1
}
.

By the revelation principle we can without loss of generality assume that

the seller offers a direct mechanism, which consists of a set Θ of type reports, an
allocation rule p : Θ→ Σ, and a payment rule T : Θ→ R.

5
The seller’s problem is

stated below.

Program I : max

(p,T)
E[T(θ)] subject to

Feasibility: p(θ) ∈ Σ for every θ ∈Θ;

Incentive Compatibility: θ1p1(θ)+θ2p2(θ)−T(θ) ≥ θ1p1(θ ′)+θ2p2(θ ′)
−T(θ ′) for every θ ,θ ′ ∈Θ;

Individual Rationality: θ1p1(θ)+θ2p2(θ)−T(θ) ≥ 0 for every θ ∈Θ.

We call a mechanism (p,T) admissible if it satisfies the above constraints. Denote
the equilibrium utility of the buyer of type θ byU(θ)= θ1p1(θ)+θ2p2(θ)−T(θ).

We require the distribution to satisfy a version of a “hazard rate condition”

that is standard in the multidimensional mechanism design literature.
6

4
Note that the seller never benefits from assigning to the buyer a bundle of two goods, because

then the buyer would consume only the good that he values most. Thus, we can denote by pi the

probability that good i (and only good i) is assigned to the buyer.

5
The seller never benefits from randomized payments because the payoffs are linear in money.

Thus, there is no loss of generality in restricting attention to deterministic payment rules.

6
The condition for the case of n goods says that the density f satisfies

(n+1) f (θ)+θ ·∇ f (θ) ≥ 0 for every θ ∈Θ,

where ∇ f is the gradient of f . See for example McAfee and McMillan (1988), Manelli and Vincent
(2006).
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Condition 1 The density f satisfies

3 f (θ1,θ2)+θ1
∂ f (θ1,θ2)

∂θ1
+θ2

∂ f (θ1,θ2)
∂θ2

≥ 0.

3 Substitutable goods

3.1 Reformulation of the seller’s problem

First, we simplify the seller’s problem in the case of substitutable goods using the

following result.

Proposition 1 Under Condition 1 there is no loss for the seller in optimizing over

mechanisms that for every θ ∈Θ satisfy:

p1(θ)+ p2(θ) ∈ {0,1} .

Proof. See Proposition 2 in Pavlov (2010).
7

This result states that in the optimal mechanism the buyer either gets a good

for sure (p1+ p2 = 1), or gets no good (p1+ p2 = 0). One can view this result as an
extension of the “no-haggling” result of Riley and Zeckhauser (1983). For the case

of one good, they have shown that the seller’s optimal mechanism, when dealing

with a risk-neutral buyer, is to quote a single “take-it-or-leave-it” price; so that the

buyer either gets the good for sure or gets no good. Note that Proposition 1 does

not rule out lotteries over goods as a part of the optimal mechanism since there is

no restriction p1, p2 ∈ {0,1}. As will be shown in the next section, the seller often
finds it optimal to offer lotteries as a part of the optimal mechanism.

Consider the buyer of type (θ1,θ2) and suppose θ1 ≥ θ2. If he chooses to
purchase some non-null allocation (p1, p2) at a price T , then his utility is

θ1p1+θ2p2−T = (θ1−θ2)p1+θ2−T
where the equality is due to p1+ p2= 1. Thus, the buyer is guaranteed to get at least
the value of the less preferred good (θ2), and his willingness to pay for a higher
probability of the more preferred good (p1) depends just on the difference in the

valuations (θ1−θ2). Moreover, note that any buyer of type (θ̃1, θ̃2), such that θ̃1−
θ̃2 = θ1− θ2, will choose the same contract as type (θ1,θ2) if θ̃2 is sufficiently
high (unless there exists another contract that gives him the same payoff), and will

choose the null allocation (0,0) at zero price if θ̃2 is low enough.
7
Balestrieri and Leao (2008) also provide this property for the case of two substitutable goods.

In their model, however, the buyer’s private information is one-dimensional.

4
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Hence, it is natural to conjecture that there is no loss for the seller in op-

timizing over the set of mechanisms in which the screening is performed only on

the differences in the valuations conditional on participation. The next proposition

shows that this is indeed the case.
8

Denote the difference in the valuations by δ = θ1−θ2. The set of possible
differences in the valuations is the interval [δ ,δ ] = [θ

1
−θ2,θ1−θ

2
]. Assume the

seller offers a mechanism that consists of a set of messages M = [δ ,δ ]∪{ /0}, an
allocation rule α : [δ ,δ ] → [0,1], and a payment rule t : [δ ,δ ] → R. The set of

messages includes all possible differences in the valuations, and a special message

/0 that indicates the buyer is not willing to participate and thus receives the null

allocation and no payment. The allocation rule α associates with each message

report (other than /0) an allocation, α(δ ) and 1−α(δ ) being the probabilities that
the buyer is assigned good 1 and 2, respectively, when the message is δ . The
payment rule t associates with each message report (other than /0) a payment, t(δ )
being the payment that the buyer pays when the message is δ . The seller’s problem
is stated below.

Program II : max

(α,t)
E[t(δ )] subject to

Feasibility: α(δ ) ∈ [0,1] for every δ ∈ [0,1];

Incentive Compatibility: δα(δ )− t(δ ) ≥ δα(δ ′)− t(δ ′) for every δ ,δ ′ ∈ [δ ,δ ].

Note that every such mechanism is individually rational, because message /0 gives

each type of the buyer zero utility.

Proposition 2 Suppose mechanism (α,t) solves Program II. Then there exists mech-
anism (p,T) that is outcome equivalent to mechanism (α,t) and solves Program I.

Let u(δ ) = δα(δ )− t(δ ). The payoff of the buyer of type (θ1,θ2) with
a difference in the valuation δ is u(δ ) + θ2 if he chooses to participate, and is 0
if he chooses message /0. Each type of buyer participates only if the payoff from

participation is nonnegative. The profit from the buyer of type θ is t(δ ) = δα(δ )−
u(δ ) whenever u(δ )+ θ2 ≥ 0, and 0 otherwise. Let us denote the measure of the
participating types for a given δ by

g(u(δ ),δ ) =
∫

θ : θ1−θ2=δ ,
u(δ )+θ2≥0

f (θ)dθ .

8
The proof of this result is similar to the proof of a similar property in Gruyer (2009).
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This allows us to rewrite the seller’s problem:

Lemma 1 Program II is equivalent to Program II
′
.

Program II
′
: max

(α,u)

∫ δ
δ (δα(δ )−u(δ ))g(u(δ ),δ )dδ subject to

F : α(δ ) ∈ [0,1] for every δ ∈ [δ ,δ ];

IC : (i) α is nondecreasing; (ii) u(δ ) = u(0)+
∫ δ
0

α(δ̃ )dδ̃ for every δ ∈ [δ ,δ ].

Proof. Note that

E[t(δ )] =
∫ δ

δ (δα(δ )−u(δ ))g(u(δ ),δ )dδ .

Using a standard argument, it is possible to show that the set of incentive com-

patibility constraints in Program II is equivalent to IC constraints in Program II
′
.
9

The problem of the seller can be further simplified when the distribution of

the valuations is symmetric.

Lemma 2 Suppose the distribution (Θ, f ) is symmetric, i.e. (i) [θ
1
,θ1] = [θ

2
,θ2] =

[θ ,θ ]; (ii) f (θ1,θ2) = f (θ2,θ1) for every (θ1,θ2). Then Program II is equivalent
to Program II

′′
.

Program II
′′
: max

(α,u)

∫ δ
0
(δα(δ )−u(δ ))g(u(δ ),δ )dδ subject to

F : α(δ ) ∈ [1
2
,1] for every δ ∈ [0,δ ];

IC : (i) α is nondecreasing; (ii) u(δ ) = u(0)+
∫ δ
0

α(δ̃ )dδ̃ for every δ ∈ [0,δ ].

Proof. In a symmetric environment there is no loss of generality in re-

stricting attention to symmetric mechanisms.
10
In symmetric mechanisms we have

α(δ ) = 1−α(−δ ) for every δ ∈ [0,δ ]. Since α is nondecreasing, we must have
α(δ ) = 1−α(−δ ) ≥ 1−α(δ ), which implies α(δ ) ≥ 1

2
for every δ ∈ [0,δ ].

For the rest of the paper we restrict attention to the symmetric case.

9
See for example Myerson (1981).

10
See for example Section 1 in Maskin and Riley (1984).
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3.2 Properties of the optimal mechanism

In this section we discuss the properties of the solution to the seller’s problem. In

the Appendix we formulate Program II” as an optimal control problem and provide

the necessary conditions for optimality.
11

A non-standard feature of Program II” is that for every δ the measure of
participating types g(u(δ ),δ ) depends on u(δ ), and thus on the mechanism offered
by the seller. To fix ideas, let us first consider a simpler problem, where the measure

of participating types is given by h(δ ), which is independent of u. In this case, the
marginal contribution of allocation α(δ ) to the profit is given byW(δ ) = δh(δ )−∫ δ

δ h(δ̃ )dδ̃ . This expression illustrates the standard “rent extraction effect”: if we
increase α(δ ), then we can charge type δ a higher price, but we will also have to
leave higher informational rents to all types above δ .12

Note thatW(0) < 0 ≤W(δ ). If the marginal profit functionW is continu-

ous and crosses zero from below only once, then it is optimal to assign the lowest

possible allocation (here α = 1

2
) to the types below the crossing point and the high-

est possible allocation (α = 1) to the types above the crossing point. IfW crosses

zero from below more than once, then one has to use the “ironing technique”.
13
In

any case, the optimal allocation α is determined by the exogenously given marginal
profit functionW .

In Program II
′′
the marginal contribution of allocation α(δ ) to the profit is

as follows:
14

V(δ ) = δg(u(δ ),δ )− ∫ δ
δg(u(δ̃ ), δ̃ )dδ̃︸ ︷︷ ︸+

rent extraction effect

∫ δ
δ (δ̃α(δ̃ )−u(δ̃ )) ∂

∂ug(u(δ̃ ), δ̃ )dδ̃︸ ︷︷ ︸
participation effect

(1)

11
The proofs of sufficiency of the necessary conditions and uniqueness of the solution are availble

in the earlier version of this paper (Pavlov, 2006).

12
The marginal contribution of allocation α(δ ) to the profit is often presented in a different way:

W(δ ) = (δ −
∫ δ

δ h(δ̃ )dδ̃
h(δ )

)h(δ )

where the expression in the brackets is called the “virtual valuation”. See for example Myerson

(1981), Riley and Zeckhauser (1983).

13
The optimality conditions in this case are roughly as follows. The marginal profit functionW

must cross zero from below at every point where α changes its value. If on a given interval (δ 1,δ 2)
we have α = 1

2
, then

∫ δ2
δ1
W(δ )dδ ≤ 0; if α ∈ ( 1

2
,1), then

∫ δ2
δ1
W(δ )dδ = 0; and if α = 1, then∫ δ2

δ1
W(δ )dδ ≥ 0. See for example Myerson (1981), Riley and Zeckhauser (1983), Guesnerie and

Laffont (1984).

14
For details see equation (8) in the Appendix.
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The first collection of terms is the “rent extraction effect” illustrated above. The

last term is the effect on the profit of the allocation at δ through the participa-
tion decisions of the types above δ . Increasing α(δ ) raises the informational rents
for all types δ̃ ≥ δ and thus increases the measure of the participating types by
∂
∂ug(u(δ̃ ), δ̃ ). Every new participant of type δ̃ brings an extra profit of δ̃α(δ̃ )−
u(δ̃ ). Hence, unlikeW , the marginal profit V endogenously depends on the mech-
anism offered by the seller, and this complicates the problem.

15

The solution retains some similarity to the solution to the simple problem

without participation effects. The seller might find it optimal to assign an inefficient

allocation α(δ ) < 1 to a given type δ in order to reduce the informational rents to
all types above δ . This concern is (nearly) absent when δ is close to δ , and thus it is
optimal to assign efficient allocations to such types. Since the “participation effect”

is always nonnegative, it can only reinforce the incentive to have “no distortion at

the top”.

Proposition 3 In the optimal mechanism there exists δ ∗ ∈ [0,δ ) such that α(δ ) = 1
for every δ ∈ (δ ∗,δ ].

Riley and Zeckhauser (1983) have shown that in the problem without par-

ticipation effects the optimal allocation always takes a simple two-step form: there

exists δ ∗ ∈ [0,δ ) such that all types below δ ∗
get the lowest possible allocation

(here α = 1

2
) and all types above δ ∗

get the highest possible allocation (α = 1).
In our problem the seller sometimes strictly benefits from assigning interior alloca-

tions α ∈ (1
2
,1) to a subset of types.

Example 1 Let the distribution of the valuations be uniform on Θ = [c,c+ 1]2

where c≥ 0. The optimal mechanism is as follows.
(i) When c ∈ [0,1]:

(α(δ ),t(δ )) = (1,
2

3
c+

1

3

√
c
2+3) for every δ ∈ [0,1]

(ii) When c ∈ (1,c) (where c≈ 1.372):

(α(δ ),t(δ ))=

{
(27
32

+( 9
32
− 1

4
c)
√
16c+9, 1

3
c+ 3

8
+ 1

8

√
16c+9)

(1, 1
3
c+ 41

96
+( 1

12
c+ 1

32
)
√
16c+9)

if

if

δ ∈ [0, 1
3
)

δ ∈ (1
3
,1]

15
Incidentally, the mathematical structure of the resulting problem is very similar to the model

of Rochet and Stole (2002), who study the problem of nonlinear pricing when the buyers have

heterogeneous outside options. The main difference is that their model has quadratic costs. The

solutions to these two models are qualitatively different; in Rochet and Stole (2002) the optimal

allocation is (for the most part) separating, while in our model there is a significant amount of

pooling.

8

The B.E. Journal of Theoretical Economics, Vol. 11 [2011], Iss. 1 (Advances), Art. 3

http://www.bepress.com/bejte/vol11/iss1/art3



C C+1 1�

2�

(1,0)

(0,1)

(0,0)

C

C+1

Figure 1: Optimal allocation in Example 1 when c ∈ [0,1].

(iii) When c ∈ [c,+∞):

(α(δ ),t(δ )) =

⎧⎨⎩ (1
2
, 2
3
c+ 1

3

√
c
2+ 3

2
)

(1, 1
6
+ 2

3
c+ 1

3

√
c
2+ 3

2
)

if

if

δ ∈ [0, 1
3
)

δ ∈ (1
3
,1]

When c is small, it is optimal to offer the buyer an option to purchase any

good he likes at a given price (see Figure 1). The reason why the seller does not gain

from offering lotteries is as follows. First, note that it is not too costly to exclude

buyers since c is small, and, by doing so, the seller can raise the prices across the

board on all options she plans to offer. Second, since the size of the exclusion region

is relatively large, the seller can attract many new buyer’s types by offering them

efficient allocation rather than lotteries. In other words, the “participation effect”,

which pushes towards a more efficient allocation, dominates the “rent extraction

effect”.

When c is large, it is optimal to offer a fair lottery (1
2
, 1
2
) over the goods

(at a discount), in addition to the option of purchasing any good at a given price

(see Figure 2). The exclusion region in this case is relatively small because all the

buyer’s types can be charged a high price. There is little to be gained by making

9
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C C+1 1�

2�

(1,0)

(0,1)

(0,0)
C

C+1

(½,½)

Figure 2: Optimal allocation in Example 1 when c ∈ [c,+∞).

C C+1 1�

2�

(1,0)

(0,1)

(0,0)

C

C+1

(a,1-a)

(1-a,a)

Figure 3: Optimal allocation in Example 1 when c ∈ (1,c).

10

The B.E. Journal of Theoretical Economics, Vol. 11 [2011], Iss. 1 (Advances), Art. 3

http://www.bepress.com/bejte/vol11/iss1/art3



the allocation more efficient, since not so many of the buyer’s types were left out.

Hence, the “participation effect” is dominated in this case by the “rent extraction

effect”, which pushes towards offering an inefficient allocation (a fair lottery) to the

buyers with small difference in the valuations in order to charge the other buyers a

higher price for the option of getting their preferred good for sure.

When c is in the intermediate range, it is optimal to offer biased lotteries

(α,1−α) and (1−α,α) over the goods (at a discount), in addition to the option
of purchasing any good for sure at a given price (see Figure 3). Neither the “par-

ticipation effect”, nor the “rent extraction effect” is strong enough to dominate, and

the form of the optimal mechanism is the result of a trade-off between them.

The optimal menus are remarkably simple in the sense of containing a very

few point contracts. The technical reason for this is roughly as follows. The seller’s

optimal control problem is of a “bang-bang” nature in α . A number of pooling
regions for α emerge due to the presence of the monotonicity constraint, but there
are only very few such regions. We conjecture that generically the optimal menus

are simple in this sense.
16,17

It is interesting to compare the expected profits from the fully optimal mech-

anism and the best deterministic mechanism, which makes no use of the lotteries.

It is possible to show that the relative gain from using a fully optimal mechanism

is at most about 1.2% (see Figure 4).
18
The next example demonstrates that there

are situations when deterministic mechanisms perform much worse than the fully

optimal mechanisms that use lotteries. This example is with a discrete distribution,

but it is possible to construct a similar example with a continuous distribution.

16
If allocation α is strictly increasing on an interval, then by Lemma 4 in the Appendix the

marginal profit function V must be equal to zero throughout this interval. Differentiating V with

respect to δ we get the condition:

·
V(δ ) = g(u(δ ),δ )+δα(δ )(

∂
∂u
g(u(δ ),δ ))+δ (

∂
∂δ
g(u(δ ),δ ))

+g(u(δ ),δ )− (δα(δ )−u(δ ))(
∂

∂u
g(u(δ ),δ ))

= 2g(u(δ ),δ )+δ (
∂

∂δ
g(u(δ ),δ ))+u(δ )(

∂
∂u
g(u(δ ),δ )) = 0

This expression depends just on the rent schedule u and the exogenously given distribution of valua-

tions. Intuitively, it takes a very special distribution to make this condition hold on a nondegenerate

interval. For more discussion of this issue, see the earlier version of this paper (Pavlov, 2006).

17
Balestrieri and Leao (2008) show that the seller sometimes finds it optimal to offer a menu that

contains a continuum of lotteries. We conjecture that this result is due to the fact that, in their model,

the buyer’s private information is one-dimensional.

18
See Appendix for the formulas of the expected profits.
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Figure 4: Profit comparison in Example 1: optimal vs. the best deterministic

mechanism.

Example 2 There are three equally likely types: (1,0), (0,1), and (1
2
, 1
2
). In the

optimal mechanism, type (1,0) gets the first good at a price 1, type (0,1) gets the
second good at a price 1, and type (1

2
, 1
2
) at a price 1

2
gets a lottery that delivers a

good with certainty, with probability
1

2
, it is the first good and with probability

1

2
, it

is the second good. To see that this mechanism is optimal, note that the allocation

is efficient, payoff of each type of the buyer is zero, and no type wants to deviate.

Hence, the seller captures the whole efficient surplus (
5

6
) and cannot do any better.

A deterministic mechanism is a pair of prices T1 and T2 for goods 1 and 2.

It is easy to see that the prices other than
1

2
or 1 are dominated. If T1= T2= 1

2
, then

the profit is
1

2
; if T1 = T2 = 1 or Ti = 1

2
and Tj = 1, then the profit is 23 . Hence, the

relative gain in the expected profit from using the fully optimal mechanism rather

than the best deterministic mechanism is 25%.
19

4 Indivisible goods

4.1 Reformulation of the seller’s problem

First, we simplify the seller’s problem in the case of indivisible goods using the

following result.

19
Thanassoulis (2004) also argues in favor of using stochastic contracts, but he only provides an

example where the gain in profit is 8%.
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Proposition 4 Under Condition 1 there is no loss for the seller in optimizing over

mechanisms that for every θ ∈Θ satisfy:

If (p1(θ), p2(θ)) �= (0,0) then pi(θ) = 1 for some i= 1,2.

Proof. See Proposition 2 in Pavlov (2010).

When the distribution of the valuations is symmetric, we get additional re-

strictions on the set of potentially optimal mechanisms.

Corollary 1 Suppose the distribution (Θ, f ) is symmetric, i.e., (i) [θ
1
,θ1] = [θ

2
,θ2]

= [θ ,θ ]; (ii) f (θ1,θ2) = f (θ2,θ1) for every (θ1,θ2). There is no loss for the seller
in optimizing over mechanisms that for every θ ∈Θ satisfy:

If (p1(θ), p2(θ)) �= (0,0) and θ i > θ j, then pi(θ) = 1.

Proof. In a symmetric environment there is no loss of generality in restrict-

ing attention to symmetric mechanisms.
20
Note that in symmetric mechanisms we

have p2(θ2,θ1) = p1(θ1,θ2), p1(θ2,θ1) = p2(θ1,θ2), T(θ2,θ1) = T(θ1,θ2).
Incentive compatibility for type (θ1,θ2) requires

θ1p1(θ1,θ2)+θ2p2(θ1,θ2)−T(θ1,θ2) ≥ θ1p1(θ2,θ1)+θ2p2(θ2,θ1)−T(θ2,θ1)
= θ1p2(θ1,θ2)+θ2p1(θ1,θ2)−T(θ1,θ2)

which implies

(θ1−θ2)(p1(θ1,θ2)− p2(θ1,θ2)) ≥ 0.
Hence, if (p1(θ), p2(θ)) �= (0,0) and θ1 > θ2, then by Proposition 4 we must have
p1(θ) = 1.

Since the optimal mechanism is symmetric, we can solve just for the case

θ1 ≥ θ2. If the buyer of type (θ1,θ2) chooses to purchase some non-null alloca-
tion (p1, p2) at the price T , then his utility is θ1+ θ2p2− T . Thus the buyer is
guaranteed to get at least the value of his most preferred good (θ1), and his will-
ingness to pay for a higher probability of the less preferred good (p2) depends just

on the valuation of the second good (θ2). Moreover, note that any buyer of type
(θ̃1,θ2), such that θ̃1 ≥ θ2, will choose the same contract as type (θ1,θ2) if θ̃1
is sufficiently high (unless there exists another contract which gives him the same

payoff), and will choose the null allocation (0,0) at zero price if θ̃1 is low enough.
As in the case of substitutable goods, it is natural to conjecture that there

is no loss for the seller in optimizing over a smaller set of mechanisms in which

20
See for example Section 1 in Maskin and Riley (1984).
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the screening is performed only on valuation for the less preferred good (θ2) con-
ditional on participation.

Assume the seller offers a mechanism that consists of a set of messages

M = [θ
2
,θ2]∪ { /0}, an allocation rule β : [θ

2
,θ2] → [0,1], and a payment rule

t : [θ
2
,θ2]→ R. The set of messages includes all possible valuations for the second

good and a special message /0 that indicates the buyer is not willing to participate

and thus receives the null allocation and no payment. The allocation rule β asso-
ciates with each message report (other than /0) an allocation, 1 and β (θ2) being the
probabilities that the buyer is assigned good 1 and 2, respectively, when the mes-

sage is θ2. The payment rule t associates with each message report θ2 a payment
t(θ2). The seller’s problem is stated below.

Program III : max

(β ,t)
E[t(δ )] subject to

Feasibility: β (θ2) ∈ [0,1] for every θ2 ∈ [θ
2
,θ2];

Incentive Compatibility: θ2β (θ2)− t(θ2) ≥ θ2β (θ ′
2
)− t(θ ′

2
)

for every θ2,θ ′
2
∈ [θ

2
,θ2].

Proposition 5 Suppose mechanism (β ,t) solves Program III. Then there exists
mechanism (p,T) that is outcome equivalent to mechanism (β ,t) and solves
Program I.

Let u(θ2) = θ2β (θ2)− t(θ2). The payoff of the buyer of type (θ1,θ2) is
u(θ2)+θ1 if he chooses to participate, and is 0 if he chooses message /0. Each type
of buyer participates only if the payoff from participation is nonnegative. The profit

from the buyer of type (θ1,θ2) is t(θ2) = θ2β (θ2)−u(θ2)whenever u(θ2)+θ1≥
0, and 0 otherwise. Let us denote the measure of the participating types for a given

θ2 by
g(u(θ2),θ2) =

∫
u(θ2)+θ1≥0,

θ1≥θ2
f (θ1,θ2)dθ1.

This allows us to rewrite the seller’s problem:

Lemma 3 Program III
′
is equivalent to Program III.

Program III
′
: max

(β ,u)

∫ θ2
θ
2

(θ2β (θ2)−u(θ2))g(u(θ2),θ2)dθ2 subject to

F : β (θ2) ∈ [0,1] for every θ2 ∈ [θ
2
,θ2];

IC : (i) β is nondecreasing; (ii) u(θ2) = u(θ
2
)+

∫ θ2
θ
2

β (θ̃2)dθ̃2
for every θ2 ∈ [θ

2
,θ2].

14
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Proof. Note that

E[t(δ )] =
∫ θ2

θ
2

(θ2β (θ2)−u(θ2))g(u(θ2),θ2)dθ2.

Using a standard argument, it is possible to show that the set of incentive compat-

ibility constraints in Program III is equivalent to IC constraints in Program III
′
.
21

4.2 Properties of the optimal mechanism

As in the case of substitutable goods, it is possible to set up the seller’s problem

given by Program III
′
as an optimal control problem and obtain the necessary con-

ditions for optimality. Formally Program III
′
is very similar to Program II”, and

thus we omit the technical details and just focus on the intuition and the results.

The marginal contribution of allocation β (θ2) to the profit is as follows

V(θ 2) = θ 2g(u(θ 2),θ 2)−
∫ θ2

θ2g(u(θ̃ 2), θ̃ 2)dθ̃ 2︸ ︷︷ ︸+

rent extraction effect

∫ θ2
θ2(θ̃ 2β (θ̃ 2)−u(θ̃ 2)) ∂

∂ug(u(θ̃ 2), θ̃ 2)dθ̃ 2︸ ︷︷ ︸
participation effect

(2)

As in the case of substitutable goods, there is the “rent extraction effect” and the

“participation effect”. The first effect is slightly different in this case: the lower

bound of the support of θ2 is θ
2
≥ 0, while the lower bound of the support of δ is

0. Thus there is less incentive to assign inefficient allocations (especially when θ
2

is high).

As in the case of substitutable goods, it is possible to show that there is “no

distortion at the top”, i.e. β = 1 when θ2 is sufficiently high.22 Also the seller
sometimes benefits from offering lotteries as is demonstrated by the next example.

Example 3 Let the distribution of the valuations be uniform on Θ = [c,c+ 1]2

where c≥ 0. The optimal mechanism is as follows.
(i) When c= 0:

(β (θ 2),t(θ2)) =
{

(0, 2
3
)

(1, 4
3
− 1

3

√
2)

if

if

θ2 ∈ [0, 2
3
− 1

3

√
2)

θ2 ∈ (2
3
− 1

3

√
2,1]

(ii) When c ∈ (0,c) (where c≈ 0.077):

(β (θ2),t(θ2)) =
{

(β̃ (c), T(c))
(1, T(c))

if

if

θ2 ∈ [c,c+ ỹ(c))
θ2 ∈ (c+ ỹ(c),c+1]

where β̃ is increasing in c, β̃ (0) = 0 and β̃ (c) = 1.
21
See for example Myerson (1981).

22
This result was also derived in Manelli and Vincent (2007) using a different technique.
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Figure 5: Optimal allocation in Example 3 when c= 0.

(iii) When c ∈ [c,+∞):

(β (θ2),t(θ2)) = (1,
4

3
c+

2

3

√
c
2+
3

2
) for every θ2 ∈ [c,c+1]

When c = 0, the optimal mechanism is deterministic: the buyer can either
get any one good at the price

2

3
or get the bundle of two goods at the price

4

3
− 1

3

√
2≈

0.862 (see Figure 5).23 As long as c is slightly above zero, the optimal mechanism
is stochastic: the buyer can either get any one good for sure and the second good

with probability β at a price T or get the bundle of the two goods at a higher price
T (see Figure 6). When c is sufficiently above zero, the optimal mechanism again

becomes deterministic: the buyer is only offered the bundle of the two goods (see

Figure 7). As discussed above, this is possibly due to the fact that both the “rent

extraction effect” and the “participation effect” push towards efficient allocations

when c is sufficiently high.

23
Manelli and Vincent (2006) give conditions for the optimality of deterministic mechanisms

under the assumption that the lower bound of the support of the valuations is zero. Their results

imply that the optimal mechanism is deterministic when c= 0, but they say nothing about the case
c> 0.
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Figure 6: Optimal allocation in Example 3 when c ∈ (0,c).
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Figure 7: Optimal allocation in Example 3 when c ∈ [c,+∞).
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Figure 8: Profit comparison in Example 3: optimal vs. the best deterministic

mechanism.

As in the case of substitutable goods, the optimal menus are very simple,

and we conjecture that this must be true generically.
24
The relative profit gain from

using fully optimal mechanism rather than the best deterministic mechanism in this

example is very small: about 0.13% (see Figure 8).
25

5 Conclusion

We have solved for the optimal mechanism for selling two goods when the buyer’s

demand characteristics are unobservable. In the case of substitutable goods, the

seller has an incentive to offer lotteries over goods in order to charge the buyers

with large differences in the valuations a higher price for obtaining their desired

good with certainty. However, the seller also has a countervailing incentive to make

the allocation of the goods among the participating buyers more efficient in order to

increase the overall demand. In the case when the buyer can consume both goods,

the seller has an incentive to underprovide one of the goods in order to charge the

buyers with large valuations a higher price for the bundle of both goods. As in the

case of substitutable goods, the seller also has a countervailing incentive to lower

the price of the bundle in order to increase the overall demand.

24
Manelli and Vincent (2007) prove that the set of potentially optimal mechanisms is very large

and includes mechanisms with complicated menus. Since their proof is not constructive, it is hard

to assess what kind of irregular distributions are needed to rationalize those mechanisms.

25
See Appendix for the formulas of the expected profits.
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The models and techniques considered in this paper can be applied to other

settings. For example, Rochet and Stole (2002) study optimal nonlinear pricing

when the buyers have heterogeneous outside options and the seller has convex costs.

It is easy to address the same question when the seller has constant marginal costs

with the techniques used here. Gruyer (2009) studies optimal auction design when

the seller has a single good for sale, can prohibit reallocation of the good between

bidders, and is bound to sell the good. The bidders are assumed to form a “well-

coordinated” cartel, so that they behave as a single buyer maximizing the sum of

the bidders’ payoffs. Our model of substitutable goods can be used to derive the

optimal auction in this setting and dispense with the assumption that the seller is

bound to sell the good. We just need to reinterpret the buyer’s valuation for good i

to be bidder i’s value for the auctioned good, and the probability of obtaining good

i to be the probability that bidder i is the winner of the auction.

6 Appendix

6.1 Proofs for Section 3

Proof of Proposition 2. Suppose (p,T) solves Program I, (α,t) solves Program
II, and (p,T) results in a higher profit than (α,t). Denote byU the utility schedule
generated by mechanism (p,T). By Proposition 1 we can assume that p1(θ) +
p2(θ) ∈ {0,1} for every θ ∈Θ.

Consider two types θ , θ ′ ∈Θ such that (i) θ1−θ2 = θ ′
1
−θ ′

2
= δ for some

δ ∈ R; and (ii) p1(θ)+ p2(θ) = p1(θ ′)+ p2(θ ′) = 1. Note that

U(θ ′) ≥ θ ′
1
p1(θ)+θ ′

2
p2(θ)−T(θ) = δ p1(θ)+θ ′

2
−T(θ)

= θ1p1(θ)+θ2p2(θ)−T(θ)+(θ ′
2
−θ2) =U(θ)+(θ ′

2
−θ2)

where the inequality is due to the incentive compatibility, and the first two equalities

make use of (i) and (ii). Similarly

U(θ) ≥U(θ ′)− (θ ′
2
−θ2).

Hence

U(θ ′) =U(θ)+(θ ′
2
−θ2)

For every relevant δ ∈ R find the type θ(δ ) that maximizes the seller’s profit:

max

θ∈Θ
T(θ) subject to θ1−θ2 = δ and p1(θ)+ p2(θ) = 1

Introduce a new direct mechanism, which consists of a set Θ of message
reports, an allocation rule p̂ : Θ→ Σ, and a payment rule T̂ : Θ→ R. Let p̂ and T̂

19
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for every θ ∈Θ such that θ1−θ2 = δ be defined as follows

(p̂1(θ), p̂2(θ), T̂(θ))=
{

(p1(θ(δ )), p2(θ(δ )),T(θ(δ )))
(0,0,0)

if

if

p1(θ)+ p2(θ) = 1
p1(θ)+ p2(θ) = 0

Notice that the new mechanism (p̂, T̂) is admissible in Program II and is at least
as profitable as the original mechanism (p,T). However, (α,t) solves Program II,
which gives a contradiction.

We rewrite the seller’s problem given in Program II
′′
as an optimal control

problem. We deal with themonotonicity constraint in a standard way by introducing

an auxiliary control variable z : [δ ,δ ] → R+ such that
·

α(δ ) = z(δ ), and in addition
allow the state variable α to have upward jumps.26

Program II
′′′
: max

z,α,u

∫ δ
0
(δα(δ )−u(δ ))g(u(δ ),δ )dδ subject to

Feasibility: α(δ ) ≥ 1

2
η(δ )

1−α(δ ) ≥ 0 η(δ )
Incentive Compatibility:

·
u(δ ) = α(δ ) λ 1(δ )
·

α(δ ) = z(δ ) λ 2(δ )
z(δ ) ≥ 0 μ(δ )

Transversality conditions: α(0), α(δ ), u(0) and u(δ ) are free

Next we derive the necessary conditions for optimality.
27
Form the La-

grangian

L(z,α,u,η ,η ,λ 1,λ 2,μ;δ ) = (δα −u)g(u,δ )+λ 1α +λ 2z+η(α − 1

2
)+η(1−α)+ μz

First we maximize L with respect to z.

L
∗ = (δα −u)g(u,δ )+λ 1α +η(α − 1

2
)+η(1−α)

with the conditions

μz= 0, μ = −λ 2 ≥ 0 and ·
α = z≥ 0. (3)

Next we get a system of Hamiltonian equations:⎧⎨⎩
·
λ 1 = −∂L∗

∂u = g(u,δ )− (δα −u) ∂
∂ug(u,δ )

·
λ 2 = −∂L∗

∂α = −δg(u,δ )−λ 1−η +η
(4)

26
See for example Guesnerie and Laffont (1984).

27
See Theorem 7 in Chapter 3 in Seierstad and Sydsæter (1987).
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The transversality conditions imply the following boundary requirements for λ 1
and λ 2:

λ 1(0) = λ 1(δ ) = λ 2(0) = λ 2(δ ) = 0 (5)

The co-state variables λ 1, λ 2 are continuous throughout.28 Moreover, λ 2 is equal
to zero at the points where the state variable α jumps.29 The remaining conditions
are

η(α − 1

2
) = 0, η ≥ 0 and α ≥ 1

2
; (6)

η(1−α) = 0, η ≥ 0 and α ≤ 1.
Here is one implication of these optimality conditions:

0 = λ 1(δ )−λ 1(0) =
∫ δ
0

·
λ 1(δ̃ )dδ̃ (7)

= −∫ δ
0
(g(u(δ̃ ), δ̃ ))dδ̃ +

∫ δ
0
(δ̃α(δ̃ )−u(δ̃ )) ∂

∂ug(u(δ̃ ), δ̃ )dδ̃

where the first equality follows from (5), and the last from (4).

Define a marginal profit function as follows:

V(δ ) = δg(u(δ ),δ )+λ 1(δ ) = δg(u(δ ),δ )+λ 1(δ )− ∫ δ
δ

·
λ 1(δ̃ )dδ̃ (8)

= δg(u(δ ),δ )− ∫ δ
δ (g(u(δ̃ ), δ̃ ))dδ̃ +

∫ δ
δ (δ̃α(δ̃ )−u(δ̃ )) ∂

∂ug(u(δ̃ ), δ̃ )dδ̃

where the last equality follows from (4) and (5). Note that equation (7) is equivalent

toV(0) = 0.
The next result reworks the optimality conditions into a set of requirements

on the marginal profit function V . Part (i) of the result gives requirements for sep-

aration of types on an interval, and parts (ii)-(iv) are the “ironing conditions” for

pooling types on an interval.
30

Lemma 4 Let (z,α,u,η ,η ,λ 1,λ 2,μ) satisfy the necessary conditions. Then the
following conditions must be satisfied.

(i) If α is strictly increasing on (δ 1,δ 2), then V = 0 on this interval.

(ii) If α = 1

2
on (δ 1,δ 2), then δ 1 = 0; V(δ 2) = 0 unless δ 2 = δ ;

∫ δ 2
δ 1
V(δ̃ )dδ̃ = k

for some k ≤ 0. Also ∫ δ
δ 1V(δ̃ )dδ̃ ≥ k and ∫ δ 2

δ V(δ̃ )dδ̃ ≤ 0 for every δ in the
interval.

28
In general, the co-state variables may have discontinuities at the points where the state variables

jump. However, this happens only when each jump in the state variable has an explicit cost, which

is not the case here. See Theorem 7 in Chapter 3 in Seierstad and Sydsæter (1987).

29
See Theorem 7 in Chapter 3 in Seierstad and Sydsæter (1987).

30
See for example Guesnerie and Laffont (1984), Myerson (1981).
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(iii) If α = α̂ ∈ (1
2
,1) on (δ 1,δ 2), thenV(δ 1) = 0 unless δ 1= 0; V(δ 2) = 0 unless

δ 2 = δ ;
∫ δ 2

δ 1
V(δ̃ )dδ̃ = 0. Also

∫ δ
δ 1V(δ̃ )dδ̃ ≥ 0≥ ∫ δ 2

δ V(δ̃ )dδ̃ for every δ in
the interval.

(iv) If α = 1 on (δ 1,δ 2), then V(δ 1) = 0 unless δ 1 = 0; δ 2 = δ ;
∫ δ 2

δ 1
V(δ̃ )dδ̃ = k

for some k ≥ 0. Also ∫ δ
δ 1V(δ̃ )dδ̃ ≥ 0 and ∫ δ 2

δ V(δ̃ )dδ̃ ≤ k for every δ in the
interval.

Proof. (i) When α is strictly increasing, then by condition (3) we have z> 0

and thus λ 2 = −μ = 0. Hence,
·
λ 2 = 0 on this interval. By condition (6) we also

have η = η = 0 on this interval. Hence, by condition (4)V = 0.
(ii) By monotonicity of α we must have δ 1 = 0. Also note that λ 2(δ 1) = 0

by the transversality condition (5). By condition (6) we have η ≥ 0 and η = 0 on
this interval.

If δ 2 < δ , then λ 2(δ 2) = 0 since α changes its value at δ 2. Note that this
implies that at the left limit of δ 2 we have

0≤
·
λ 2(δ−

2
) ≤−V(δ−

2
)

where the first inequality follows from condition (3), which requires λ 2 ≤ 0, the
second inequality is by condition (4) and the fact that η ≥ 0 and η = 0 on this
interval. At the right limit of δ 2 we have

0≥
·
λ 2(δ+

2
) ≥−V(δ+

2
)

where the first inequality follows from λ 2≤ 0, the second inequality is by condition
(4) and condition (6), which requires η = 0 and η ≥ 0 outside the interval [δ 1,δ 2].
Since V is continuous, we conclude thatV(δ 2) = 0.

If δ 2 = δ , then λ 2(δ 2) = 0 by the transversality condition (5). Hence, in
either case we must have

0= λ 2(δ 2)−λ 2(δ 1) =
∫ δ 2

δ 1

·
λ 2(δ̃ )dδ̃

Since η ≥ 0 and η = 0 on this interval, by condition (4) we have∫ δ 2
δ 1
V(δ̃ )dδ̃ = −∫ δ 2

δ 1
η(δ̃ )dδ̃ =: k≤ 0

Also note that

0≥ λ 2(δ ) = λ 2(δ )−λ 2(δ 1) =
∫ δ

δ 1

·
λ 2(δ̃ )dδ̃

22
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which by condition (4) implies∫ δ
δ 1
V(δ̃ )dδ̃ = −∫ δ

δ 1
η(δ̃ )dδ̃ ≥ k

Finally, note that

0≥ λ 2(δ ) = λ 2(δ )−λ 2(δ 2) = −∫ δ 2
δ

·
λ 2(δ̃ )dδ̃

which by condition (4) implies∫ δ 2
δ V(δ̃ )dδ̃ = −∫ δ 2

δ η(δ̃ )dδ̃ ≤ 0
The proofs of (iii) and (iv) are similar to the proof of (ii) and therefore

omitted.

Proof of Proposition 3. Assume that in the optimal mechanism α(δ ) < 1

for every δ ∈ [0,δ ). Then by Lemma 4 we must have
∫ δ
0
V(δ )dδ ≤ 0.

On the other hand, by condition (7) we have∫ δ
0
(δα(δ )−u(δ )) ∂

∂ug(u(δ ),δ )dδ =
∫ δ
0
g(u(δ ),δ )dδ > 0

Hence, the “participation effect” in the formula for V(δ ) is strictly positive for a
subset of types of positive measure. Thus∫ δ

0
V(δ )dδ >

∫ δ
0
(δg(u(δ ),δ )− ∫ δ

δg(u(δ̃ ), δ̃ )dδ̃ )dδ = 0

where the equality follows from integration by parts. This gives a contradiction.

Calculations for Example 1

Let δ̂ be such that
c+u(δ̂ ) = 0. (9)

It is straightforward to show that δ̂ ∈ [0,1] exists and is unique. Notice that

g(u(δ ),δ ) =
{
1−δ + c+u(δ )
1−δ

if

if

δ ∈ [0, δ̂ )
δ ∈ (δ̂ ,1]

.

Thus, if δ ∈ [0, δ̂ ), then the marginal profit (see equation (8)) is

V(δ ) = δ (c+1−δ +u(δ ))

−∫ δ̂
δ (c+u(δ̃ ))dδ̃ − ∫

1

δ (1− δ̃ )dδ̃ +
∫ δ̂

δ (δ̃α(δ̃ )−u(δ̃ ))dδ̃ (10)

= δ (2(c+1)− 3

2
δ +u(δ ))− cδ̂ − 1

2
+

∫ δ̂
δ (δ̃α(δ̃ )−2u(δ̃ ))dδ̃

= δ (2(c+1)− 3

2
δ +3u(δ ))+ cδ̂ − 1

2
+3

∫ δ̂
δ δ̃α(δ̃ )dδ̃
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where the last equality follows from integration by parts and equation (9).

If δ ∈ (δ̂ ,1], then

V(δ ) = δ (1−δ )− ∫
1

δ (1− δ̃ )dδ̃ = 1

2
(1−δ )(3δ −1)

Also note that

·
V(δ ) =

{
2c+2+3u(δ )−3δ
2−3δ

if

if

δ ∈ [0, δ̂ )
δ ∈ (δ̂ ,1]

and

··
V(δ ) =

{
3(α(δ )−1)
−3

if

if

δ ∈ [0, δ̂ )
δ ∈ (δ̂ ,1]

.

Hence, the marginal profitV is (weakly) concave on [0, δ̂ ) and is concave on (δ̂ ,1].

Notice that

·
V is discontinuous at δ̂ unless c= 0:

·
V(δ̂

−
) = 2− c−3δ̂ ≤ 2−3δ̂ =

·
V2(δ̂

+
). (11)

Equation (7) can be rewritten as follows:

V(0) = cδ̂ − 1

2
+3

∫ δ̂
0

δ̃α(δ̃ )dδ̃ = 0. (12)

Case 1. α(δ ) = 1 for every δ ∈ [0,1].
In this case u(δ ) = u(0)+δ , and

∫ δ
0

δ̃α(δ̃ )dδ̃ = 1

2
δ 2. Using equation (12),

we get

δ̂ = 1

3
(
√
c
2+3− c)

and from equation (9) we find

u(0) = −(2
3
c+ 1

3

√
c
2+3).

Thus, the marginal profit when δ ∈ [0, δ̂ ) can be rewritten as follows

V(δ ) = δ (2(c+1)+ 3

2
δ +3u(0))+ cδ̂ − 1

2
+
3

2
δ̂
2− 3

2
δ 2 = δ (2−

√
c
2+3)

Hence, V is nonnegative on [0,1] when c ∈ [0,1], and thus by Lemma 4 the candi-
date α is indeed optimal (see Figure 1). The payment for every δ is

t(δ ) = δα(δ )−u(δ ) = −u(0) = 2

3
c+ 1

3

√
c
2+3= T(c).

The expected profit is

Π(c) = Pr{max(θ 1,θ2) ≥ T(c)} ·T(c)
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where

Pr{max(θ1,θ2) ≥ T(c)} = 1− 1

9
(
√
c
2+3− c)2.

Case 2. α(δ ) is not identically equal to one on [0,1].
In this case V is strictly concave on both [0, δ̂ ) and (δ̂ ,1]. First, we argue

that δ̂ < 1

3
. Assume δ̂ ≥ 1

3
, then concavity together with (11) and the facts that

V(0) =V(1) = 0 and V(δ̂ ) ≥ 0 imply that V is strictly positive almost everywhere
on (0,1), and thus α(δ ) �= 1 cannot be optimal.

Since δ = 1

3
is the only place where V(δ ) crosses zero from below, by

Lemma 4 we have α(δ ) equal to some constant α ∈ [1
2
,1) on the interval [0, 1

3
).

Notice that u(δ ) = u(0)+αδ , and
∫ δ
0

δ̃α(δ̃ )dδ̃ = 1

2
αδ 2 for δ ∈ [0, 1

3
). Us-

ing equation (12):

3

2
αδ̂

2

+ cδ̂ − 1

2
= 0. (13)

and from equation (9) we find

u(0) = −c−αδ̂ . (14)

Thus the marginal profit when δ ∈ [0, δ̂ ) can be rewritten as follows

V(δ ) = δ (2(c+1)− 3

2
δ +3u(0)+3αδ )+ cδ̂ − 1

2
+ 3

2
αδ̂

2− 3

2
αδ 2

= δ (2− c−3αδ̂ − 3

2
(1−α)δ )

where the last equality uses equations (13) and (14). Also note that∫ 1
3
0
V(δ )dδ =

∫ δ̂
0

δ (2− c−3αδ̂ − 3

2
(1−α)δ )dδ +

∫ 1
3

δ̂
1

2
(1−δ )(3δ −1)dδ

= −αδ̂
3− 1

2
cδ̂
2

+ 1

2
δ̂ − 2

27
= 1

6
(cδ̂

2

+ δ̂ − 4

9
)

where the last equality uses equation (13).

Case 2.1. α ∈ (1
2
,1).

By Lemma 4 in this case we must have

∫ 1
3
0
V(δ )dδ = 0, which gives

δ̂ = 1

6c
(
√
16c+9−3).

Using equation (13), we get

α = 27

32
+( 9

32
− 1

4
c)
√
16c+9.

Notice that α is strictly decreasing in c. Also α = 1 when c= 1, and α = 1

2
when

c = c ≈ 1.372. Every participating type δ ∈ [0, 1
3
) chooses allocation (α,1−α)

(see Figure 2). Their payment is

t(δ ) = δα(δ )−u(δ ) = −u(0) = c+αδ̂ = 1

3
c+ 3

8
+ 1

8

√
16c+9= T(c)
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Every participating type δ ∈ (1
3
,1] chooses allocation (1,0). Their payment is

t(δ ) = δα(δ )−u(δ ) = −u(0)+ 1

3
(1−α) = c+αδ̂ + 1

3
(1−α)

= 1

3
c+ 41

96
+( 1

12
c+ 1

32
)
√
16c+9= T(c)

The expected profit is

Π(c) = Pr{αmax{θ1,θ2}+(1−α)min{θ1,θ2} ≥ T(c)} ·T(c)+

Pr{|δ | ≥ 1

3
} · (T(c)−T(c))

where

Pr{αmax{θ1,θ2}+(1−α)min{θ1,θ2} ≥ T(c)}
= 1− (27

32
+( 9

32
− 1

4
c)
√
16c+9)( 1

6c
(
√
16c+9−3))2

and Pr{|δ | ≥ 1

3
} = 4

9
.

Case 2.2. α = 1

2
.

By Lemma 4 in this case we must have

∫ 1
3
0
V(δ )dδ ≤ 0, which gives

δ̂ ≤ 1

6c
(
√
16c+9−3). (15)

Using equation (13) we get

δ̂ = 2

3
(
√
c
2+ 3

2
− c)

It is possible to verify that inequality (15) is satisfied whenever c ≥ c. Every par-
ticipating type δ ∈ [0, 1

3
) chooses allocation (1

2
, 1
2
) (see Figure 3). Their payment

is

t(δ ) = δα(δ )−u(δ ) = −u(0) = c+ 1

6
δ̂ = 2

3
c+ 1

3

√
c
2+ 3

2
= T(c)

Every participating type δ ∈ (1
3
,1] chooses allocation (1,0). Their payment is

t(δ ) = δα(δ )−u(δ ) = −u(0)+ 1

6
= c+αδ̂ + 1

6

= 1

3
c+ 41

96
+( 1

12
c+ 1

32
)
√
16c+9= T(c)

The expected profit is

Π(c) = Pr{1
2
θ1+ 1

2
θ2 ≥ T(c)} ·T(c)+Pr{|δ | ≥ 1

3
} · (T(c)−T(c))

where

Pr{1
2
θ1+ 1

2
θ2 ≥ T(c)} = 1− 2

9
(
√
c
2+ 3

2
− c)2

and Pr{|δ | ≥ 1

3
} = 4

9
.
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The best deterministic mechanism

Note that, if the seller offers only individual goods, then the optimal price and profit

are given in Case 1 above. The relative (percentage) profit gain from using the fully

optimal mechanism vs the best deterministic mechanism is given in Figure 4.

6.2 Proofs for Section 4

Proof of Proposition 5.

Suppose (p,T) solves Program I, (β ,t) solves Program III, and (p,T) re-
sults in a higher profit than (β ,t). Denote by U the utility schedule generated

by mechanism (p,T). By Corollary 1 we can assume that for every θ such that
θ1 > θ2: if (p1(θ), p2(θ)) �= (0,0), then p1(θ) = 1.

Consider two types θ , θ ′ ∈ Θ such that (i) θ1 > θ2, θ ′
1
> θ ′

2
; (ii) θ2 = θ ′

2
;

and (iii) p1(θ) = p1(θ ′) = 1. Note that

U(θ ′) ≥ θ ′
1
p1(θ)+θ ′

2
p2(θ)−T(θ) = θ ′

1
+θ ′

2
p2(θ)−T(θ)

= θ1+θ2p2(θ)−T(θ)+(θ ′
1
−θ1) =U(θ)+(θ ′

1
−θ1)

where the inequality is due to the incentive compatibility, and the first two equalities

make use of (ii) and (iii). Similarly,

U(θ) ≥U(θ ′)− (θ ′
1
−θ1).

Hence,

U(θ ′) =U(θ)+(θ ′
1
−θ1)

For every relevant θ̂2 ∈ R find the type θ(θ̂2) that maximizes the seller’s profit:

max

θ∈Θ,θ1≥θ2
T(θ) subject to θ2 = θ̂2 and p1(θ) = 1

Introduce a new direct mechanism, which consists of a set Θ of message
reports, an allocation rule p̂ : Θ→ Σ, and a payment rule T̂ : Θ→ R. Let p̂ and T̂

for every θ ∈Θ such that θ2 = θ̂2 be defined as follows

(p̂1(θ), p̂2(θ), T̂(θ))=
{

(p1(θ (̂θ2)), p2(θ (̂θ2)),T(θ (̂θ2)))
(0,0,0)

if

if

p1(θ) = 1
p1(θ) = p2(θ) = 0

Notice that the new mechanism (p̂, T̂) is admissible in Program III and is at least
as profitable as the original mechanism (p,T). However, (β ,t) solves Program III,
which gives a contradiction.
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Calculations for Example 3

Let θ̂2 be such that
u(θ̂2)+ θ̂2 = 0. (16)

It is straightforward to show that θ̂2 ∈ [0,1] exists and is unique. Notice that

g(u(θ2),θ2) =
{
c+1+u(θ2)
c+1−θ2

if

if

θ2 ∈ [c, θ̂2)
θ2 ∈ (θ̂2,c+1]

.

Thus, if θ2 ∈ [c, θ̂2), then the marginal profit is

V(θ2) = θ2(c+1+u(θ 2))−
∫ θ̂2

θ2(c+1+u(θ̃2))dθ̃2−
∫
c+1
θ̂2

(c+1− θ̃2)dθ̃2+∫ θ̂2
θ2(θ̃2β (θ̃2)−u(θ̃2))dθ̃2

= θ2(2(c+1)+u(θ2))− 1

2
(c+1)2− 1

2
(θ̂2)2+∫ θ̂2

θ2(θ̃2β (θ̃2)−2u(θ̃2))dθ̃2

= θ2(2(c+1)+3u(θ 2))− 1

2
(c+1)2+ 3

2
(θ̂2)2+3

∫ θ̂2
θ2θ̃2β (θ̃2)dθ̃2

where the last equality follows from integration by parts and equation (16). If θ2 ∈
(θ̂2,c+1], then

V(θ2) = θ2(c+1−θ2)−
∫
c+1
θ2 (c+1− θ̃2)dθ̃2 = 1

2
(c+1−θ2)(3θ2− (c+1))

Note that V(θ2) is nonnegative on (max
{

θ̂2, 13(c+1)
}

,c+1]. Also note that

·
V(θ2) =

{
2c+2+3u(θ2)
2c+2−3θ2

if

if

θ2 ∈ [c, θ̂2)
θ2 ∈ (θ̂2,c+1]

and

··
V(θ2) =

{
3β (θ2)
−3

if

if

θ2 ∈ [c, θ̂2)
θ2 ∈ (θ̂2,c+1]

.

Hence,V is (weakly) convex on [c, θ̂ 2) and is strictly concave on (θ̂2,c+1]. Notice
that

·
V is continuous at θ̂2 by equation (16).
An analog of equation (7) in this case is

0= −∫ θ̂2
c (c+1+u(θ̃ 2))dθ̃ 2−

∫
c+1
θ̂2

(c+1−θ̃ 2)dθ̃ 2+
∫ θ̂2
c (̃θ 2β (θ̃ 2)−u(̃θ 2))dθ̃ 2 (17)

= c(c+1+2u(c))− 1

2
(c+1)2+ 3

2
(θ̂ 2)2+3

∫ θ̂2
c θ̃ 2β (θ̃ 2)dθ̃ 2.
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Note that equation (17) implies that V(c) = (c+ 1+ u(c))c ≥ 0. Hence,
unless c= 0, there exists at most a single point on (c,c+1) where V crosses zero
from below.

Case 1. β (θ 2) = 1 for every θ2 ∈ [c,c+1].
In this case u(θ2) = u(c)+(θ2−c), and

∫ θ2
c

θ̃2β (θ̃2)dθ̃2 = 1

2
((θ̂2)2−c2).

Using equation (16):

u(c) = u(θ̂2)− (θ̂2− c) = −2θ̂2+ c
Equation (17) yields

θ̂2 = 2

3
c+ 1

3

√
c
2+ 3

2

and thus

u(c) = −1

3
c− 2

3

√
c
2+ 3

2
.

The marginal profit when θ2 ∈ [c, θ̂2) can thus be rewritten as follows

V(θ2) = 3

2
(θ2− c)2+2(12c+1−

√
c
2+ 3

2
)(θ2− c)+ 1

3
c(2c+3−2

√
c
2+ 3

2
)

Note that θ̂2 > 1

3
(c+ 1) and thus V(θ2) ≥ 0 for θ2 ∈ [θ̂2,c+ 1). By an

analog of Lemma 4 it is enough to show that

∫ θ2
c
V(θ̃2)dθ̃2 ≥ 0 for every θ2 ∈

[c, θ̂2).∫ θ2
c V(θ̃ 2)dθ̃ 2 = 1

2
((θ 2−c)2+2(12c+1−

√
c
2+ 3

2
)(θ 2−c)+ 2

3
c(2c+3−2√c2+ 3

2
))(θ 2−c)

The quadratic polynomial x
2+2(1

2
c+1−√

c
2+ 3

2
)x+ 2

3
c(2c+3−2√c2+ 3

2
) has no

real roots if

(1
2
c+1−

√
c
2+ 3

2
)2 < 2

3
c(2c+3−2

√
c
2+ 3

2
)

which holds when c> c≈ 0.077. Hence, ∫ θ2
c
V(θ̃2)dθ̃2 ≥ 0 for every θ2 ∈ [c, θ̂2)

when c ∈ [c,+∞).
Every participating type gets an allocation (1,1) (see Figure 7). The pay-

ment for every θ2 is

t(θ2) = θ2β (θ2)−u(θ2) = c−u(c) = 4

3
c+ 2

3

√
c
2+ 3

2
= T(c).

The expected profit is

Π(c) = Pr{θ1+θ2 ≥ T(c)} ·T(c)

where

Pr{θ1+θ2 ≥ T(c)} = 1− 2

9
(
√
c
2+ 3

2
− c)2.

Case 2. β (θ2) is not identically equal to one on [c,c+1].
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By an analog of Lemma 4 and due to the properties of V discussed above,

the optimal β is a step function

β (θ2) =
{

β
1

if

if

θ2 ∈ [c,θ ∗
2
)

θ2 ∈ (θ ∗
2
,c+1]

where β ∈ [0,1), and θ ∗
2
is such that V(θ ∗

2
) = 0 and

∫ θ∗
2

c
V(θ̃2)dθ̃2 ≤ 0 (with an

equality if β ∈ (0,1)).
Let us guess that θ ∗

2
< θ̂2, which implies θ̂2 > 1

3
(c+1). Hence,

u(θ2) =
{
u(c)+β (θ2− c)
u(c)+β (θ ∗

2
− c)+(θ2−θ ∗

2
)
if

if

θ2 ∈ [c,θ ∗
2
)

θ2 ∈ (θ ∗
2
,c+1]

(18)

and

∫ θ2
c θ̃2β (θ̃2)dθ̃2 =

{
1

2
β ((θ2)2− c2)
1

2
β ((θ ∗

2
)2− c2)+ 1

2
((θ2)2− (θ ∗

2
)2)

if

if

θ2 ∈ [c,θ ∗
2
)

θ2 ∈ (θ ∗
2
,c+1]

Using equation (16):

u(c) = −2θ̂2+βc+(1−β )θ ∗
2

(19)

Equation (17) yields

3(θ̂2− c)2+2c(θ̂2− c)− 1

2
(1−β )(3(θ ∗

2
− c)2+2c(θ ∗

2
− c))− 1

2
= 0 (20)

The marginal profit when θ2 ∈ [c,θ ∗
2
) can thus be rewritten as follows

V(θ2) = 3

2
β (θ2− c)2+(−6(θ̂2− c)+3(1−β )(θ ∗

2
− c)+(2− c))(θ2− c) (21)

+3(θ̂2− c)2− 3

2
(1−β )(θ ∗

2
− c)2+ c− 1

2

and thus∫ θ∗
2

c V(θ̃ 2)dθ̃ 2= 1

2
β (θ ∗

2
−c)3+ 1

2
(−6(̂θ 2−c)+3(1−β)(θ ∗

2
−c)+(2− c))(θ ∗

2
− c)2 (22)

+(3(θ̂ 2− c)2− 3

2
(1−β )(θ ∗

2
− c)2+ c− 1

2
)(θ ∗

2
− c)

Case 2.1. β ∈ (0,1).
Denote x = θ̂2− c and y= θ ∗

2
− c. We can rewrite (20), V(θ ∗

2
) = 0 (using

(21)) and

∫ θ∗
2

c
V(θ̃2)dθ̃2 = 0 (using (22)) as follows⎧⎨⎩

3x
2+2cx− 1

2
(1−β )(3y2+2cy)− 1

2
= 0

3x
2−6xy+ 3

2
y
2+(2− c)y+ c− 1

2
= 0

1

2
(6x2−6xy+βy2+(2− c)y+2c−1)y= 0
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We numerically check that the solution (x̃(c), ỹ(c), β̃ (c)) is such that β̃ (c) is in-
creasing, β̃ (0) = 0 and β̃ (c) = 1.

Every participating type θ2 ∈ [c,c+ ỹ(c)) chooses an allocation (1, β̃ (c))
(see Figure 6). Using equations (18) and (19), we can compute their payment

t(θ2) = θ2β (θ2)−u(θ2) = c(1+ β̃ (c))+2x̃(c)− (1− β̃ (c))ỹ(c) = T(c)

Every participating type θ2 ∈ (c+ ỹ(c),c+ 1] chooses an allocation (1,1). Using
equations (18) and (19), we can compute their payment

t(θ 2) = θ2β (θ2)−u(θ2) = 2c+2x̃(c) = T(c)

The expected profit is

Π(c) = Pr

{
max{θ 1,θ 2}+ β̃ (c)min{θ 1,θ 2}−T(c) ≥max{0,θ 1+θ 2−T(c)

}}
·T(c)

+Pr
{

θ 1+θ 2−T(c) ≥max
{
0,max{θ 1,θ 2}+β̃ (c)min{θ 1,θ 2}−T(c)

}}
·T(c)

where

Pr

{
max{θ1,θ2}+ β̃ (c)min{θ1,θ2}−T(c) ≥max{0,θ1+θ2−T(c)

}}
= 2ỹ(c)(1−2x̃(c)+(1− 1

2
β̃ (c))ỹ(c))

and

Pr

{
θ1+θ2−T(c) ≥max

{
0,max{θ1,θ2}+ β̃ (c)min{θ1,θ2}−T(c)

}}
= (1− ỹ(c))2−2(x̃(c)− ỹ(c))2.

Case 2.2. β = 0.
The only possibility not covered by Cases 1 and 2.1 is when c = 0. Sim-

ilar to Case 2.1, we can represent condition (20), V(θ ∗
2
) = 0 (using (21)) and∫ θ∗

2

c
V(θ̃2)dθ̃2 ≤ 0 (using (22)) as follows⎧⎨⎩

3x
2− 3

2
y
2− 1

2
= 0

3x
2−6xy+ 3

2
y
2+2y− 1

2
= 0

1

2
(6x2−6xy+2y−1)y≤ 0

The solution is: (x,y) = (2
3
− 1

6

√
2, 2
3
− 1

3

√
2) ≈ (0.431,0.195). The payments and

the expected profit can be computed using the formulas from Case 2.1 (with c= 0).
The allocation is given in Figure 5.
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The best deterministic mechanism

Let T be the price of allocations (1,0) and (0,1), and T be the price of a
bundle (1,1). Note that, if the seller offers only the bundle, then the expressions for
the optimal price and profit are given in Case 1 above. If both individual goods and

bundle are offered, then the optimal prices maximize

2T(c+1−T)(T −T − c)+T((c+1− (T −T))2− 1

2
(T − (T −T))2).

We checked numerically that it is optimal to offer just a bundle when c> c′ ≈ 0.05,
and it is optimal to offer both a bundle and individual goods when c < c′ ≈ 0.05.
The relative (percentage) profit gain from using the fully optimal mechanism vs the

best deterministic mechanism is given in Figure 8.
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