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Abstract

A seller can produce two units of a good. Each unit can be customized into either

version a or version b, and buyers privately learn their valuations for each version.

First I consider the case when the second unit is more costly to produce than the �rst.

Under certain distributional conditions the search for the optimal mechanism can be

restricted to a class where there is no uncertainty about the number of units the buyer

will receive, i.e. the buyer chooses whether to get 0, 1, or 2 units. However, there still

may be uncertainty over which version the buyer will get. Buyers whose valuation for

their favorite version is high, both in absolute terms and relative to the other version,

purchase two units of their favorite version with certainty. Buyers with low values

are excluded from purchasing. Buyers with values in the intermediate range typically

get a lottery over di¤erent versions. I compare the fully optimal mechanism with the

mechanism that optimally sells each unit separately and show that the solutions coincide

when the fully optimal mechanism is deterministic but they may di¤er otherwise. In

the case when the cost of the second unit is not higher than the cost of the �rst the
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optimal mechanisms only contain contracts such that the buyer chooses whether to get

0 or 2 units. Thus the solution in this case can be shown to be isomorphic to a single

unit case.

1 Introduction

A seller can produce two units of a good. Each unit can be customized into either version a

or version b. Buyers privately learn their valuations for each version, and the valuations are

continuously distributed. The objective of the paper is to �nd the optimal stochastic selling

mechanisms for di¤erent cost structures of the seller.

There has been a signi�cant recent progress in understanding the properties of the solution

to the problem of selling multiple products when there is a single unit of each product

available. See, for example, Daskalakis, Deckelbaum and Tzamos (2017) and references

therein. These results can be easily extended to the case of multiple units of multiple products

as long as the unit costs of each product remain constant. However the case of multiple units

and multiple products with varying unit costs remains not well understood. Wilson (1993)

and Armstrong (1996) studied a continuous quantities model with increasing marginal costs

and explicitly solved some examples using the �integration along rays�technique. Yet Rochet

and Chone (1998) argued that those examples are special and provided a general approach

for numerically solving such problems. There had been limited progress since then, and

economics of such problems remains not very clear.1

In this paper I adapt techniques that exist for the case when there are single units of

multiple products (Pavlov 2011a, 2011b) to study a relatively simple model with two units

of customizable good. The goal is to obtain explicit solutions and understand the involved

tradeo¤s. Hopefully the methods and insights of this paper can be used to study other

1Bikhchandani and Mishra (2020) and Devanur, Haghpanah and Psomas (2020) also consider multidi-
mensional problems with multiple units. In their settings the buyer may have di¤erent private values for
di¤erent units and there is no customization, while in this paper the good can be customized into di¤erent
versions but the buyer values di¤erent units in the same way.
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multidimensional mechanism design problems.

To the best of my knowledge a setting where the good can be customized into horizontally

di¤erentiated versions and the buyer�s taste characteristics are multidimensional private in-

formation was not explicitly studied before. However, the model where the seller has n

products and the buyer has a unit demand (Thanassilous, 2004; Pavlov, 2011b) can be rein-

terpreted as a model where the seller has a single unit of the good that can be customized into

n possible versions. Alternatively, the present model can be reinterpreted as a multiproduct

multiunit model where the buyer has demand for two units.

In Section 3 I consider the case when the second unit is more costly to produce than

the �rst. I show that under certain distributional conditions the search for the optimal

mechanism can be restricted to a class where there is no uncertainty about the number of

units the buyer will receive, i.e. the buyer chooses whether to get 0, 1, or 2 units. However,

there still may be uncertainty over which version the buyer will get. Using this result, I

simplify the two-dimensional mechanism problem design problem so that it can be solved

by standard optimal control methods. There is no distortion for buyers whose valuation for

their favorite version is high, both in absolute terms and relative to the other version. Such

buyers purchase two units of their favorite version with certainty. Buyers with low values are

excluded from purchasing. Solved examples suggest that the optimal mechanism typically

contains only a few point contracts. Buyers with values in the intermediate range usually get

a lottery over di¤erent versions. I compare the fully optimal mechanism with the mechanism

that optimally sells each unit separately and show that the solutions coincide when the fully

optimal mechanism is deterministic but they may di¤er otherwise.

In Section 4 I consider the case when the cost of the second unit is not higher than the

cost of the �rst. In this case it is without loss of generality to consider mechanisms where

the buyer chooses whether to get 0 or 2 units. Thus the solution in this case can be shown

to be isomorphic to a single unit case. Similar to the case considered in Section 3, there is

no distortion at the top in a particular sense, buyers with low values are excluded, and in
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the solved examples the optimal mechanisms are simple. Buyers whose values are not too

low and whose di¤erence in the valuations is not too high usually get a lottery over di¤erent

versions.

Section 5 contains concluding comments. The proofs are relegated to the Appendix unless

stated otherwise.

2 Model

A seller can produce two units of a good. Production costs of the �rst and the second units

are c1 and c2. Each unit can be customized at no cost into one of two possible versions which

will be called version a and version b. A buyer values each unit of version a and b at va

and vb, respectively. The valuations are known only to the buyer, and they are continuously

distributed according to a symmetric strictly positive continuously di¤erentiable density f

on � = [v; v]2, where 0 � v < v.

The buyer�s utility is
P

i=a;b

P
j=1;2 vipij � T , where pij is the probability that the buyer

receives jth unit that was customized into version i, and T is his payment to the seller. The

seller�s utility is T �
P

i=a;b

P
j=1;2 cjpij.

By the revelation principle we can without loss of generality assume that the seller o¤ers

a direct mechanism. It consists of a set � of type reports, an allocation rule pij : �! [0; 1]

for i = a; b, j = 1; 2, and a payment rule T : � ! R.2 The seller�s problem is stated

below. There are three kinds of constraints: feasibility (F ), incentive compatibility (IC), and

individual rationality (IR). A mechanism that satis�es all constraints is called admissible.

Feasibility constraints consist of nonnegativity constraints on probabilities, requirements that

the probability that each unit is produced is at most one, and requirements that ensure that

2The seller never bene�ts from randomized payments because the payo¤s are linear in money. Thus there
is no loss of generality in restricting attention to deterministic payment rules.
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unit 2 is not produced more often than unit 1.

Program I : max
pij ;T

E

"
T (v)�

X
i=a;b

X
j=1;2

cjpij (v)

#

subject to

F: pij (v) � 0 for every v 2 �, i = a; b, j = 1; 2X
i=a;b

pij (v) � 1 for every v 2 �, j = 1; 2

X
i=a;b

pi1 (v) �
X
i=a;b

pi2 (v) for every v 2 �

IC:
X
i=a;b

X
j=1;2

vipij (v)� T (v) �
X
i=a;b

X
j=1;2

vipij (v
0)� T (v0) for every v; v0 2 �

IR:
X
i=a;b

X
j=1;2

vipij (v)� T (v) � 0 for every v 2 �

Denote U (v) :=
P

i=a;b

P
j=1;2 vipij (v)� T (v).

There are two qualitatively distinct cases depending on whether unit 1 or unit 2 is cheaper

to produce. Increasing marginal costs case with c2 > c1 � 0 is considered in Section 3,

nonincreasing marginal costs case with c1 � c2 � 0 is in Section 4.

3 Increasing marginal costs

3.1 Simplifying the problem

In this case unit 2 is more expensive than unit 1: c2 > c1 � 0. Straightforward cost

minimization logic implies that unit 2 will be produced with positive probability only if unit

1 is produced with probability 1.

Lemma 1 Let c2 > c1. For every v, if
P

i=a;b pi2 (v) > 0 then
P

i=a;b pi1 (v) = 1.
3

3The proof of Lemma 1 is straightforward and omitted.
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Next we show that under a particular distributional assumption the search for optimal

mechanisms can be restricted to the class where there is no uncertainty about the number of

units the buyer will receive, i.e. depending on the report he knows whether he will get 0, 1,

or 2 units. However, there still may be uncertainty over which version the buyer will get.

Proposition 1 Let c2 > c1. Suppose

3f (v) +
X
i=a;b

(vi � cj)
@f (v)

@vi
� 0 and cj � v for j = 1; 2. (1)

Then there is no loss for the seller in optimizing over mechanisms that satisfy

X
i=a;b

X
j=1;2

pij (v) 2 f0; 1; 2g for every v 2 �.

The second part of condition (1) requires the costs to be relatively low, and the �rst part

demands that the density does not decrease too quickly.4 I conjecture that the result holds

under more general conditions, but I did not investigate it here.

The idea of the proof is as follows. Each message in the mechanism leads to particular

expected quantity of version a, Qa :=
P

j=1;2 paj, version b, Qb :=
P

j=1;2 pbj, and payment,

T . Consider all such point contracts achievable through the mechanism. For the sake of the

argument here assume that the resulting set contains all points such that Qa � 0, Qb � 0,

Qa +Qb � 2, but the proof deals with a general case.

Next consider removing contracts such that Qa + Qb 2 (1; 2). High-value buyers that

were previously choosing contracts that were removed will switch to contracts with Qa +

Qb = 2. Such contracts are relatively more pro�table because they are more expensive, and

because the seller�s cost is assumed to be su¢ ciently small. Low-value buyers will switch

to the less pro�table one-unit contracts with Qa + Qb = 1. The net e¤ect on the pro�t

depends on the ratio of high- and low-value buyers, and it is guaranteed to be positive by

4This condition is quite common in multidimensional mechanism design. It was �rst introduced in McAfee
and McMillan (1988).
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the distributional assumption that ensures that the density is not decreasing too quickly.

Similarly it is pro�table to remove contracts such that Qa + Qb 2 (0; 1), and let the buyers

self-select into one-unit contracts with Qa+Qb = 1 and the null contract with Qa = Qb = 0.

Using Proposition 1 we can rewrite the buyer�s payo¤. Consider the payo¤ of the buyer

of type v = (va; vb) such that va � vb:

U (v) =

8>>>><>>>>:
0

(va � vb) pa1 (v) + vb � T (v)

(va � vb)
�P

j=1;2 paj (v)
�
+ 2vb � T (v)

if
P

i=a;b pij (v) = 0 for j = 1; 2

if
P

i=a;b pi1 (v) = 1,
P

i=a;b pi2 (v) = 0

if
P

i=a;b pij (v) = 1 for j = 1; 2

We can think of the buyer making a choice in two steps. First he chooses whether to buy

0, 1, or 2 units of the good. Second he decides on the expected quantities of versions a and

b : pa1 and 1 � pa1 if he is buying one unit,
P

j=1;2 paj and 2 �
P

j=1;2 paj if he is buying

two units. The expression for the buyer�s payo¤ given above suggests that the choice of the

expected quantities of versions a and b will be determined by how much more the buyer likes

version a relative to version b, va � vb. The initial choice of the number of units of the good

to buy is determined by how high is the buyer�s valuation for the less preferred good vb, as

well as the utility from optimally choosing the expected quantities of versions a and b at the

second step.

Next we reformulate the seller�s problem based on this idea. In a symmetric environment

there is no loss for the seller in restricting attention to symmetric mechanisms. Thus we

can state the problem only for the case va � vb, and the mechanism in the other case is

symmetric. Proposition 2 below establishes that this reformulation is without loss for the

seller.

Denote � = va � vb, and notice that � 2
�
��; �

�
where � = v � v. Suppose the seller

o¤ers a mechanism which consists of a set of messages M = f0; 1; 2g�
�
0; �
�
, allocation rules

q1 :
�
0; �
�
!
�
1
2
; 1
�
, q2 :

�
0; �
�
! [1; 2] and payment rules tj :

�
0; �
�
! R for j = 1; 2.5 The

5Symmetry of the mechanism implies that buyers with � = va�vb � 0 must get larger expected quantities
of their preferred goods: q1 (�) � 1� q1 (�) and q2 (�) � 2� q2 (�). Otherwise it would be pro�table for buyer
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buyer chooses how many units he would like to get and announces � 2
�
0; �
�
. If 0 and �

are chosen, then the buyer receives the null allocation and there is no payment. If 1 and �

are chosen, then the buyer is assigned expected quantity q1 (�) of the more preferred good,

1� q1 (�) of the less preferred good, and pays t1 (�) to the seller. If 2 and � are chosen, then

the buyer is assigned expected quantity q2 (�) of the more preferred good, 2 � q2 (�) of the

less preferred good, and pays t2 (�) to the seller.

Let uj (�) := �qj (�)� tj (�) for every � 2
�
0; �
�
, j = 1; 2. Consider a buyer with valuation

(va; vb) such that va � vb, and let � = va � vb. The utility of this buyer from participating

in the seller�s mechanism, and truthfully announcing his �, is 0 if he chooses zero units,

u1 (�) + vb if he chooses one unit, and u2 (�) + 2vb if he chooses two units. Thus the types

such that u2 (�) + vb > u1 (�) and u2 (�) + 2vb > 0 will buy two units. The types such that

u1 (�) > u2 (�)+vb and u1 (�)+vb > 0 will buy one unit. The types such that u2 (�)+2vb < 0

and u1 (�) + vb < 0 will buy zero units. The types such that either u2 (�) + vb = u1 (�) or

u1 (�)+vb = 0 are indi¤erent between buying 1 and 2 units, or 0 and 1 units, but their choices

will not a¤ect the expected pro�t because these buyers�types have measure zero. Denote by

gj (u1 (�) ; u2 (�) ; �) the measure of types with di¤erence in the valuations � who buy j units.

Now let us state the seller�s problem using this new notation. Note that IC constraints

are rewritten using the envelope formula and monotonicity of the allocation.

Program II : max
qj ;uj

�Z
0

 X
j=1;2

 
�qj (�)� uj (�)�

jX
k=1

ck

!
gj (u1 (�) ; u2 (�) ; �)

!
d�

subject to

F: q1 (�) 2 [0:5; 1] , q2 (�) 2 [1; 2] for every � 2
�
0; �
�

IC: qj nondecreasing, uj (�) = uj (0) +
Z �

0

qj

�e�� de� 8� 2 �0; �� , j = 1; 2
Proposition 2 Suppose mechanism (q1; q2; u1; u2) solves Program II. Then there exists an

with � to report ��. The above constraints can be rewritten as q1 (�) � 0:5 and q2 (�) � 1.
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outcome equivalent mechanism (pa1; pb1; pa2; pb2; T ) that solves Program I.

3.2 Properties of the solution and an example

Let us �rst consider some general properties of the optimal allocation.

Proposition 3 It is without loss for the seller to consider mechanisms such that

(i) For every �, types with su¢ ciently high vb buy two units.

(ii) Types with su¢ ciently high vb and j�j buy two units which are customized into their

preferred version with probability 1.

(iii) Types with su¢ ciently low vb and j�j buy nothing.

(iv) Suppose for a given � there are types that buy nothing, then there exists a nonempty set

of values vb that buy one unit.

Properties (i) and (ii) can be interpreted as no distortion at the top kind of results.

Under Condition (1) it is e¢ cient to sell two units of the preferred version to each type of the

buyer. Property (i) says that high enough types will be served e¢ cient quantity, although

the allocation may still be ine¢ cient because they may get a lottery over di¤erent versions.

Property (ii) says that there is a subset of high types that will be given a fully e¢ cient

allocation. Property (iii) is an exclusion result that is standard for multidimensional models.6

Property (iv) shows that there is a subset of intermediate types that will be allocated one

unit. This property holds because it costs less to produce the �rst unit than the second unit.

One implication of the result is that g1 and g2 (the measures of types who buy one and

two units for a given di¤erence in the valuations that appear in the objective of Program II)

can be written in a relatively simple way.7

6See, for example, Armstrong (1996).
7This is shown in Lemma 6 in the Appendix.
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g1 (u1 (�) ; u2 (�) ; �) =

8>>>><>>>>:
R u1(�)�u2(�)
�u1(�) f (vb + �; vb) dvbR u1(�)�u2(�)
v

f (vb + �; vb) dvb

0

if

if

if

� 2 [0; �1]

� 2 [�1; �2]

� 2
�
�2; �

� (2)

and

g2 (u1 (�) ; u2 (�) ; �) =

8><>:
R v��
u1(�)�u2(�)f (vb + �; vb) dvbR v��
v
f (vb + �; vb) dvb

if

if

� 2 [0; �2]

� 2
�
�2; �

� (3)

where �1; �2 such that 0 � �1 � �2 � �, u1 (�1) + v = 0, and u2 (�2)� u1 (�2) + v = 0.

In the Appendix we formulate the seller�s problem as an optimal control problem and

provide conditions for optimality. This approach can be applied to �nd a solution that is

interior in the following sense: v � � > u1 (�)� u2 (�) on [0; �2] and u1 (�)� u2 (�) > �u1 (�)

on [0; �1]. These conditions guarantee that the integrals in (2) and (3) do not vanish. Thus

functions g1; g2, and the objective, are di¤erentiable in u1; u2 (except for �1; �2) as required

for applying the optimal control approach.8

The optimality conditions reveal how the pro�t is a¤ected by an increase in qk (�) for a

given � 2
�
0; �
�
and k 2 f1; 2g:9

�gk (u1 (�) ; u2 (�) ; �)�
�Z
�

gk

�
u1

�e�� ; u2 �e�� ;e�� de�| {z }
rent extraction e¤ect

+
X
j=1;2

�Z
�

@gj

�
u1

�e�� ; u2 �e�� ;e��
@uk

 e�qj �e��� uj �e��� jX
m=1

cm

!
de�

| {z }
participation e¤ects

8All numerical examples with discretized type space that were computed appear to have interior solutions
in the sense mentioned above. There is also a strong intuition that the optimal solution must be interior
for every �. First, two-unit contracts are more pro�table than one-unit contracts, and thus not selling any
such contracts should not be optimal. Second, if only a two-unit contract and a null contract are sold with
positive probability, then o¤ering a one-unit contract at half a price of the two-unit contract minus a small "
should be pro�table because (a) it will attract roughly equal measures of buyers that were previously buying
nothing and that were buying two units, (b) its cost is strictly less than half the cost of a two-unit contract.
However, formalizing this intuition appears to be very challenging.

9This expression is equivalent to (16) in the Appendix.
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The �rst e¤ect can be called a rent extraction e¤ect, and it is standard for mechanism

design problems with asymmetric information. Raising qk (�) means that the buyers with

di¤erence in the valuations equal to � who choose to buy k units are more likely to get their

preferred version. This increases the surplus by �, and the measure of these buyers is given

by gk (u1 (�) ; u2 (�) ; �). However raising qk (�) also increases informational rent uk for all

buyers with di¤erences in the valuations above � who choose to buy k units. The expected

loss from these types of buyers is
R �
�
gk

�
u1

�e�� ; u2 �e�� ;e�� de�.
The second group of e¤ects accounts for the changes on the extensive margin, and these

can be called participation e¤ects. An increase in the informational rent, uk
�e�� for e� > �, at-

tracts additional buyers with di¤erence in the valuations equal to e� to buy k units, and change
the measure of such buyers by @

@uk
gk

�
u1

�e�� ; u2 �e�� ;e�� � 0. This change has to be multi-
plied by the pro�t from this category of buyers, e�qk �e���uk �e���Pk

m=1 cm. But an increase

in uk
�e�� may attract some buyers with di¤erence in the valuations equal to e� away from

buying j 6= k units, and change the measure of such buyers by @
@uk
gj

�
u1

�e�� ; u2 �e�� ;e�� � 0.
This change has to be multiplied by the respective pro�t, e�qj �e��� uj �e���Pj

m=1 cm.

These participation e¤ects work di¤erently for the case of one unit and two units. An

increase in q2 (�) may attract additional buyers into purchasing two units only at the expense

of the buyers who are currently purchasing one unit: @g2
@u2

= � @g1
@u2

� 0. The sum of partici-

pation e¤ects when k = 2 is nonnegative because the pro�t from two units is not less than

from one unit. On the other hand an increase in q1 (�) usually attracts additional buyers

into purchasing one unit from two sources: buyers switching from purchasing two units and

buyers switching from purchasing nothing. The e¤ect of attracting the former buyers is non-

positive since the pro�t from one unit not higher than pro�t from two units, but the e¤ect

of attracting the new buyers on pro�t is positive.

Next we consider an example.

Example 1 Let c1 = 0, c2 = c > 0, and the valuations be uniformly distributed on [c; c+ 1]
2.
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The optimal mechanism o¤ers the buyer the following options:10

(i) When c 2 (0; 1]:

8>>>><>>>>:
(0; 0) at a price 0

(� (c) ; 1� � (c)) ; (1� � (c) ; � (c)) at a price 1
3

p
c2 + 3� (c) + 2

3
c

(2; 0) ; (0; 2) at a price 1
3

p
c2 + 3� (c) + 5

3
c+ 1

3

p
3 (2� � (c))

where � is decreasing in c, � (0) = 1, � (1) = 2
3
.11

(ii) When c 2 (1; c�) (where c� � 1:22):

8>>>>>>><>>>>>>>:

(0; 0) at a price 0

(e� (c) ; 1� e� (c)) ; (1� e� (c) ; e� (c)) at a price 1
3

p
c2 + 3e� (c) + 2

3
c

(1 + e� (c) ; 1� e� (c)) ; (1� e� (c) ; 1 + e� (c)) at a price 1
3

p
c2 + 3e� (c) + 5

3
c+ 2

3

(2; 0) ; (0; 2) at a price 1
3

p
c2 + 3e� (c) + 5

3
c+ 2

3
+ (1� e� (c))�2

3
� 1

3

q
2�e�(c)
1�e�(c)

�
where e� is decreasing in c, e� (1) = 2

3
, e� (c�) = 1

2
.12

(iii) When c 2 [c�;1):

8>>>>>>><>>>>>>>:

(0; 0) at a price 0�
1
2
; 1
2

�
at a price 1

3

q
c2 + 3

2
+ 2

3
c�

3
2
; 1
2

�
;
�
1
2
; 3
2

�
at a price 1

3

q
c2 + 3

2
+ 5

3
c+ 2

3

(2; 0) ; (0; 2) at a price 1
3

q
c2 + 3

2
+ 5

3
c+ 1� 1

6

p
3

One notable feature of this example is that the optimal mechanism is quite simple, i.e.

contains only a few point contracts. For a model with a single unit there are results that

show optimality of simple mechanisms under certain distributional assumptions (Wang and

Tang, 2017; Thirumulanathan et al, 2019a, 2019b). Example 1 suggests that this property is

10Each option speci�es expected quantitites of product a and b, and a price.
11� (c) solves

�p
c2 + 3�+ c

�2
=
p
3 (2� �)

�p
c2 + 3�+ 2c

�
.

12e� (c) solves �pc2 + 3�+ c�2 �2 +q 2��
1�� +

q
1��
2��

�
= 9

�p
c2 + 3�+ 2c

�
.
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Figure 1: Optimal allocation in Example 1 when c 2 (0; 1].

Figure 2: Optimal allocation in Example 1 when c 2 (1; c�).
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Figure 3: Optimal allocation in Example 1 when c 2 [c�; 1).

likely to hold for models with more than one unit.

Note that the o¤ered two-unit contracts are always deterministic and e¢ cient when c 2

(0; 1], and are deterministic and e¢ cient for most of the buyers�types when c > 1. On the

other hand the o¤ered one-unit contracts are always stochastic. Thus the seller introduces

two distortions for the buyers whose valuations are at the intermediate level. First, they are

served only one unit while it would be e¢ cient to give them two units. Second, they get a

lottery over versions rather than their preferred version. In the next subsection we compare

the optimal mechanism for selling two units with the optimal mechanisms for selling each unit

of the good separately to obtain additional insights into the form of the optimal mechanism.

3.3 Comparison with selling units separately

A single-version multiple-unit scenario when the unobserved buyers�tastes are described by

a one-dimensional parameter had been extensively studied.13 One interesting property of the

solution to that class of problems when the seller�s marginal costs are increasing is that it can

be obtained by treating the sale of each individual unit as if it was done on a separate market,

13Mussa and Rosen (1978) is a classic reference. For a recent general approach to the problem see Hellwig
(2010).
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regardless of the other units.14 In this subsection we investigate under what circumstances a

similar property holds for our model.

Let us �rst revisit the setting of Example 1 and consider the optimal mechanisms for

separate selling of units 1 and 2. Solutions are translated from Pavlov (2011b) to the present

setting.

Example 2 Let c1 = 0, c2 = c > 0, and the valuations be uniformly distributed on [c; c+ 1]
2.

The optimal mechanism for selling the �rst unit is to o¤er the buyer the following options:

(i) When c 2 (0; 1]:

8><>: (0; 0) at a price 0

(1; 0) ; (0; 1) at a price 2
3
c+ 1

3

p
c2 + 3

(ii) When c 2 (1; c��) (where c�� � 1:372):

8>>>><>>>>:
(0; 0) at a price 0

(� (c) ; 1� � (c)) ; (1� � (c) ; � (c)) at a price 1
3
c+ 3

8
+ 1

8

p
16c+ 9

(1; 0) ; (0; 1) at a price 41
96
+ 1

3
c+

�
1
12
c+ 1

32

�p
16c+ 9

where � (c) = 27
16
+
�
9
16
� 1

2
c
�p
16c+ 9.

(iii) When c 2 [c��;1):

8>>>><>>>>:
(0; 0) at a price 0

(0:5; 0:5) at a price 2
3
c+ 1

3

q
c2 + 3

2

(1; 0) ; (0; 1) at a price 1
6
+ 2

3
c+ 1

3

q
c2 + 3

2

The optimal mechanism for selling the second unit is to o¤er the buyer the following

14See, for example, Section 2.2 in Armstrong, (2016) for description of this �demand pro�le� approach.
Suppose the gross surplus of the buyer with valuation v 2 R+ who consumes quantity q 2 R+ is vw (q) where
w is an increasing (weakly) concave function with w (0) = 0. Then the optimal marginal price for qth unit
also solves the problem of optimally selling only this unit provided that the demand is computed using the
marginal value vw0 (q).

15



options: 8><>: (0; 0) at a price 0

(1; 0) ; (0; 1) at a price 1
3

p
3 + c

Comparing Examples 1 and 2 we can see that the solutions are always di¤erent.15 ;16 Both

solutions allow buying two units of any particular version, (2; 0) ; (0; 2), but the price in the

optimal mechanism for joint selling is lower than in the solution for separate selling, except

for c = 1 when the prices are equal. Next, the separate selling solution always gives an

option to purchase deterministic one-unit contracts, (1; 0) ; (0; 1), but those are never o¤ered

in the joint selling mechanism (or we can think that those options are o¤ered at prohibitively

high prices). When c 2 (0; 1], the solution for separate selling is deterministic, while the

optimal mechanism for joint selling o¤ers stochastic contracts in case one unit is sold. When

c 2 (1; c��], both solutions o¤er one-unit and two-unit stochastic contracts, but they di¤er

in prices and probabilities of getting di¤erent versions. When c > c��, both solutions o¤er

the same stochastic one-unit and two-unit contracts, (0:5; 0:5) is priced in the same way, but�
3
2
; 1
2

�
;
�
1
2
; 3
2

�
are priced di¤erently.

Let us take a closer look at the optimal joint selling and separate selling mechanisms when

c = 1 and c = 2. The optimal separate selling mechanism when c = 1 o¤ers for purchase

deterministic one-unit contracts and two-unit contracts. The optimal joint selling mechanism

simply replaces deterministic one-unit contracts with lotteries
�
2
3
; 1
3

�
;
�
1
3
; 2
3

�
and lowers the

price by about 6:7%. The pro�t gain from joint selling relative to separate selling is about

0:46%.

The optimal separate selling mechanism when c = 2 o¤ers for purchase a one-unit lottery�
1
2
; 1
2

�
, one-unit deterministic contracts, two-unit lotteries

�
3
2
; 1
2

�
;
�
1
2
; 3
2

�
, and two-unit deter-

ministic contracts. The optimal joint selling mechanism removes the one-unit deterministic

contracts (or raises their prices to a prohibitively high level), and adjust the prices of two-unit

15Solutions coincide when c = 0, however in this the unit costs are not strictly increasing.
16As mentioned earlier in this section, solutions will coincide when there is a single product. For example,

let c1 = 0, c2 = c > 0, and the valuation is uniformly distributed on [c; c+ 1]. Then the optimal mechanism
o¤ers to sell the �rst unit at max

�
1
2 +

1
2c; c

	
, and the second unit at 12 + c.
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lotteries and deterministic contracts up by about 1:9% and down by about 0:7%, respectively.

The pro�t gain from joint selling relative to separate selling is about 0:5%.17

Why cannot the separate selling mechanism replicate the joint selling optimal mechanism?

Let us revisit again the case when c = 1, and consider conditions on the prices in the

individual selling mechanisms that have to hold if it were to replicate the outcome of the

optimal joint selling mechanism. Since some buyers�types are supposed to receive two units

of their preferred good, it must be that the separate selling mechanisms o¤er options to buy

deterministic contracts for unit 1 and 2. Clearly the price of deterministic contracts for unit 1

must be greater than for the lotteries
�
2
3
; 1
3

�
;
�
1
3
; 2
3

�
, otherwise no one would buy the lotteries.

However then the buyers�types su¢ ciently close to the diagonal, va � vb, would buy lottery

for the �rst unit and deterministic contract for unit 2 rather than deterministic contracts for

both units.

On the other hand, notice that separate selling mechanism can replicate the optimal joint

selling mechanism if we allow the prices in the mechanism for selling the second unit to

depend on the contract chosen for unit 1. In case c = 1, deterministic contract for unit 2 can

be priced at prohibitively high price if the buyer purchased a lottery for unit 1.

The next result gives su¢ cient conditions for the separate selling approach and the fully

optimal mechanism design to result in the same solution.

Proposition 4 Suppose the fully optimal joint selling solution is deterministic and condi-

tionally e¢ cient, i.e. it only o¤ers options (0; 0), (1; 0), (0; 1), (2; 0), and (0; 2). Then the

solution to the separate selling problem coincides with the fully optimal joint selling solution.

Next we provide an example with such a property. This example does not satisfy condition

(1) in Proposition 1, and thus it cannot be solved by the technique used earlier. Instead it

is solved by �integration along rays� (Armstrong, 1996). The idea is to �nd an optimal

17The pro�t gain from joint selling relative to separate selling is under 1% for every c. While this is not
a large gain, it is interesting to note that it is of the same magnitude as the gain from using stochastic
mechanisms as opposed to deterministic ones in a one-unit model in a similar example (Pavlov, 2011b).
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mechanism for the types that lie on a given ray from the origin, and then check if the

combination of all mechanisms is globally incentive compatible on the whole type space.

Example 3 Let 0 � c1 � c2 � 1, and the valuations be uniformly distributed on [0; 1]2. The

optimal mechanism o¤ers the buyer the following options:

8>>>><>>>>:
(0; 0) at a price 0

(1; 0) ; (0; 1) at a price 1
3
c1 +

1
3

p
c21 + 3

(2; 0) ; (0; 2) at a price 1
3
c1 +

1
3

p
c21 + 3 +

1
3
c2 +

1
3

p
c22 + 3

4 Nonincreasing marginal costs

Now let us consider the case when unit 1 is at least as expensive as unit 2: c1 � c2 � 0.

If c1 > c2, then the seller will take advantage of the economies of scale as follows. The

optimal way to organize production of expected quantity Q 2 [0; 2] is to produce two units

with probability 1
2
Q and zero units with probability 1 � 1

2
Q. Thus the cost of producing Q

units is 1
2
(c1 + c2)Q. In the context of Program I this means that the third set of feasibility

constraints will be binding, and thus
P

i=a;b pi1 (v) =
P

i=a;b pi2 (v) for every v. If c1 = c2, then

there are multiple solutions to the seller�s problem, including the ones where the constraints

mentioned in the previous sentence bind as well.

Moreover notice the buyer cares only about the expected quantity of each version he

receives. Thus there is no loss for the seller in restricting attention to mechanisms such that

pi1 (v) = pi2 (v) for i = a; b for every v. Let us state it as a result and omit the proof.

Lemma 2 Let c1 � c2. Without loss for every v we can set pi1 (v) = pi2 (v) for i = a; b.

Denote pi (v) = pij (v) for i = a; b, j = a; b. Then seller�s problem can be rewritten as

18



follows.

Program III : max
pi;T

E

"
T (v)� (c1 + c2)

 X
i=a;b

pi (v)

!#
subject to

F: pi (v) � 0 for every v 2 �, i = a; bX
i=a;b

pi (v) � 1 for every v 2 �

IC:
X
i=a;b

2vipi (v)� T (v) �
X
i=a;b

2vipi (v
0)� T (v0) for every v; v0 2 �

IR:
X
i=a;b

2vipi (v)� T (v) � 0 for every v 2 �

If we divide the objective, IC and IR constraints by 2, then it becomes clear that this problem

is isomorphic to a problem where the seller has a single unit of a good that can be produced

at a cost 1
2
(c1 + c2). This problem was studied in Pavlov (2011b), and we can just translate

some of the results into the present setting.

Proposition 5 Let c1 � c2 and suppose

3f (v) +
X
i=a;b

�
vi �

c1 + c2
2

�
@f (v)

@vi
� 0 and c1 + c2

2
� v.

Then there is no loss for the seller in optimizing over mechanisms that satisfy

X
i=a;b

pi (v) 2 f0; 1g for every v 2 �

An approach similar to the one used in Section 3 can be used to study the optimal contract.

The general properties of the solution stated in parts (i), (ii), and (iii) of Proposition 3 remain

valid in this setting. However, property (iv) of that result does not hold here: it is never

optimal to o¤er for sale just one unit of the good. The following example is translated from

Pavlov (2011b) to the present setting.

Example 4 Denote c := 1
2
(c1 + c2), let c1 � c2 � 0, and let the valuations be uniformly
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distributed on [c+ d; c+ d+ 1]2 where c; d � 0. The optimal mechanism o¤ers the buyer the

following options:

(i) When d 2 [0; 1]:

8><>: (0; 0) at a price 0

(2; 0) ; (0; 2) at a price 4
3
d+ 2

3

p
d2 + 3 + 2c

(ii) When d 2 (1; d�) (where d� � 1:372):

8>>>><>>>>:
(0; 0) at a price 0

(
 (d) ; 2� 
 (d)) ; (2� 
 (d) ; 
 (d)) at a price 2
3
d+ 3

4
+ 1

4

p
16d+ 9 + 2c

(2; 0) ; (0; 2) at a price 41
48
+ 2

3
d+

�
1
6
d+ 1

16

�p
16d+ 9 + 2c

where 
 (d) = 27
16
+
�
9
16
� 1

2
d
�p
16d+ 9.

(iii) When d 2 [d�;1):

8>>>><>>>>:
(0; 0) at a price 0

(1; 1) at a price 4
3
d+ 2

3

q
d2 + 3

2
+ 2c

(2; 0) ; (0; 2) at a price 1
3
+ 4

3
d+ 2

3

q
d2 + 3

2
+ 2c

5 Concluding comments

The presented analysis builds on existing techniques for the case when there are single units

of multiple products. It allowed to produce explicit solutions and better understand the

involved tradeo¤s of the multiproduct multiunit seller�s problem.

I conjecture that the qualitative properties of the solution obtained in Propositions 1-

5 can be extended to the case of more than two versions. Obtaining exact solutions for

such case using optimal control methods will likely be di¢ cult, but perhaps a veri�cation

procedure along the lines Daskalakis, Deckelbaum and Tzamos (2017) could be developed to

check optimality of conjectured solutions.
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6 Appendix

6.1 Proofs for Section 3.1

We will prove several preliminary Lemmas before proving Proposition 1.

Lemma 3 In the optimal mechanism U (v; v) = 0. There is no loss for the seller in setting

pij (v; v) = 0 for every i; j and T (v; v) = 0.

Proof. Note that for every v 2 � IC implies

U (v) � U (v; v) +
X
i=a;b

X
j=1;2

(vi � v) pij (v; v) � U (v; v)

If U (v; v) > 0, then we can increase pro�ts by raising all payments T by U (v; v). Thus it is

optimal to set U (v; v) = 0.

Assigning a null allocation for free to the lowest type achieves U (v; v) = 0 and does not

a¤ect expected pro�t because the lowest type has measure zero.

Lemma 4 Let v = (va; vb), v0 = (v0a; v
0
b) such that va � vb = v0a � v0b and vb > v0b. Suppose v

prefers allocation (pa1; pb1; pa2; pb2) at price T to allocation (p0a1; p
0
b1; p

0
a2; p

0
b2) at price T

0, and

v0 has the opposite preference. Then IC implies
P

i=a;b

P
j=1;2 pij �

P
i=a;b

P
j=1;2 p

0
ij.

Proof. Denote � = va � vb. We are given that

�

 X
j=1;2

paj

!
+ vb

 X
i=a;b

X
j=1;2

pij

!
� T � �

 X
j=1;2

p0aj

!
+ vb

 X
i=a;b

X
j=1;2

p0ij

!
� T 0

�

 X
j=1;2

p0aj

!
+ v0b

 X
i=a;b

X
j=1;2

p0ij

!
� T 0 � �

 X
j=1;2

paj

!
+ v0b

 X
i=a;b

X
j=1;2

pij

!
� T

Sum up the inequalities and simplify to get

(vb � v0b)
 X
i=a;b

X
j=1;2

pij �
X
i=a;b

X
j=1;2

p0ij

!
� 0
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Lemma 5 Let �c = c2 � c1, and �1 = fv 2 � : pa1 (v) + pb1 (v) = 1g. Expected pro�t can

be expressed as follows

X
i=a;b

Z v

v

U (v; v�i) (v � c1) f (v; v�i) dv�i �
X
i=a;b

Z v

v

U (v; v�i) (v � c1) f (v; v�i) dv�i

�
Z
�

U (v)

 
3f (v) +

X
i=a;b

(vi � c1)
@f (v)

@vi

!
dv

+�c

Z
@�1

�
U (v)� va + vb

2

�
n (v) f (v) dv ��c

Z
�1

�
U (v)� va + vb

2

� X
i=a;b

@f (v)

@vi

!
dv

where @�1 is the surface of set �1, and n (v) is the outward-pointing unit normal vector at

v on the surface of �1.

Proof. The expected pro�t is

E

"
T (v)�

X
i=a;b

X
j=1;2

cjpij (v)

#

= E

"X
i=a;b

(vi � c1)
 X
j=1;2

pij (v)

!
� U (v)

#
� E

"
�c
X
i=a;b

pi2 (v)

#

By the envelope theorem we know that @U(v)
@vi

=
P

j=1;2 pij (v) a.e. for i = a; b. Using this

fact and the divergence theorem18 the �rst term in the expression for the pro�t above can be

written as

X
i=a;b

Z v

v

U (v; v�i) (v � c1) f (v; v�i) dv�i �
X
i=a;b

Z v

v

U (v; v�i) (v � c1) f (v; v�i) dv�i

�
Z
�

U (v)

 
3f (v) +

X
i=a;b

(vi � c1)
@f (v)

@vi

!
dv

18See, for example, Armstrong (1996).
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and the subtracted second term can be written as

�c

Z
�1

 X
i=a;b

@U (v)

@vi
� 1
!
f (v) dv (4)

= �c

Z
@�1

�
U (v)� va + vb

2

�
n (v) f (v) dv ��c

Z
�1

�
U (v)� va + vb

2

� X
i=a;b

@f (v)

@vi

!
dv

Proof of Proposition 1. Consider an admissible mechanism (pa1; pb1; pa2; pb2; T ) that

generates utility schedule U , and suppose that
P

i=a;b

P
j=1;2 pij (v) =2 f0; 1; 2g for some types.

We will make three adjustments to the original mechanism, each adjustment will produce

an admissible mechanism and weakly increase pro�ts. The �rst adjustment will ensure that

the types on the upper boundary receive 2 units in total. The second adjustment will ensure

that some speci�c types receive 1 unit in total. The last adjustment will remove all contracts

other than those that give exactly 0, 1, or 2 units in total.

Step 1. Denote

@� = fv 2 � j there is h 2 fa; bg such that vh = vg

For every v 2 @� modify the allocation and payment as follows. If va = v, then bpbj (v) =
pbj (v), bpaj (v) = 1 � pbj (v) for j = 1; 2. If vb = v and va 6= v, then bpaj (v) = paj (v),bpbj (v) = 1� paj (v) for j = 1; 2. Also let

bT (v) = T (v) + v 2�X
i=a;b

X
j=1;2

pij (v)

!

All types that do not belong to @� get the same allocation and payment as before.
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Note that this adjustment does not a¤ect utility of types in @�. It does not disturb IC

because for every v 2 � and every ev 2 @�, with evi = v:
va

 X
j=1;2

bpaj (ev)!+ vb X
j=1;2

bpbj (ev)!� bT (ev)
= va

 X
j=1;2

paj (ev)!+ vb X
j=1;2

pbj (ev)!� T (ev)� (v � vi) 2�X
i=a;b

X
j=1;2

pij (v)

!

� va

 X
j=1;2

paj (ev)!+ vb X
j=1;2

pbj (ev)!� T (ev)
� va

 X
j=1;2

paj (v)

!
+ vb

 X
j=1;2

pbj (v)

!
� T (v) = U (v)

where the �rst equality is by de�nition of bpij and bT , the second inequality is by IC of the
original mechanism. The expected pro�ts are not a¤ected because @� has measure zero.

Step 2. Denote by � the set of available expected allocations in the mechanism: all

(Qa; Qb) such that (Qa; Qb) =
�P

j=1;2 paj (v) ;
P

j=1;2 pbj (v)
�
for some v. Note that (0; 0) 2

� by Lemma 3. De�ne a pricing function over � as follows: t (Qa; Qb) = T (v) if (Qa; Qb) =�P
j=1;2 paj (v) ;

P
j=1;2 pbj (v)

�
. If a given pair of quantities (Qa; Qb) can be achieved via

di¤erent reports, then IC implies that the payment is the same for all such reports. Let �

be the convex hull of closure of �, i.e. � = co (cl (�)). Let t be the greatest convex function

that is weakly below t, i.e. t (Q) = vex (t (Q)) for every Q 2 �.

Suppose now that we allow the buyer to choose any contract from (Qa; Qb) 2 � at

a price t (Qa; Qb). Consider the optimal choice correspondence � : � � �. It is up-

per hemicontinuous, nonempty, compact- and convex-valued (by the Maximum theorem

and due to quasi-concavity of the objective). Note that IC of the original mechanism

implies that the original contract assigned to each type of the buyer remains optimal:�P
j=1;2 paj (v) ;

P
j=1;2 pbj (v)

�
2 � (v) for every v.19

19Suppose not, i.e. there exists v 2 � such that (Q�a; Q
�
b) 2 � (v) and vaQ�a + vbQ�b � t (Q�a; Q�b) > U (v).

Let � (Qa; Qb) := max
�
t (Qa; Qb) ; vaQa + vbQb � U (v)

	
for every (Qa; Qb) 2 �. Function � is convex, lies

weakly below t, and t (Q�a; Q
�
b) < � (Q

�
a; Q

�
b). This contradicts the de�nition of t.
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De�ne another correspondence s : �� [0; 2] as follows:

s (v) = fs 2 [0; 2] : 9 (Qa; Qb) 2 � (v) such that s = Qa +Qbg

Note that s is also upper hemicontinuous, nonempty, compact- and convex-valued.

Fix � 2 [v � v; v � v]. Note that Lemma 4 implies that s (vb + �; vb) is nondecreasing in vb:

if vb < v0b, then for every � 2 s (vb + �; vb) and �0 2 s (v0b + �; v0b) we have � � �0. Adjustment

in Step 1 ensured that 2 2 s (vb + �; vb) if (vb + �; vb) 2 @�. Note that we can also choose

vb 2 R low enough so that 0 2 s (vb + �; vb) (it may have to be so low that (vb + �; vb) =2 �).

Thus there exists non-empty Ib (�) � R such that 1 2 s (vb + �; vb) for every vb 2 Ib (�).

Suppose not. Then by monotonicity of s there exists v0b such that s (vb + �; vb) � [0; 1) for

every vb < v0b, s (vb + �; vb) � (1; 2] for every vb > v0b. Upper hemicontinuity implies that

there exists �0 < 1 and �00 > 1 such that �0; �00 2 s (v0b + �; v0b). Convex-valuedness then

implies 1 2 s (v0b + �; v0b).

Next perform the following adjustment to the mechanism for every v 2 Ib (�) such that

v =2 @�. Note that there exists some (Qa; Qb) 2 � (v) such that Qa + Qb = 1. Adjust the

contract for v as follows: bpa1 (v) = Qa, bpb1 (v) = Qb, bpa2 (v) = bpb2 (v) = 0, bT (v) = t (Qa; Qb).
Such a mechanism adjustment is IC and gives the same utility U to every type of the

buyer as the original mechanism. By Lemma 5 the expected pro�t is completely determined

by U and the set �1 = fv 2 � : pa1 (v) + pb1 (v) = 1g. The adjustment of the mechanism

may have expanded set �1, but the contribution of these new points to the expected pro�t

is zero because for every such point v we have bpa2 (v) = bpb2 (v) = 0. Thus the expected pro�t
remains the same.

Step 3. Construct a new menu of contracts by removing all contracts for which the

expected quantity does not equal exactly to 0, 1 or 2:

�0 =
�
(Qa; Qb) 2 � : Qa +Qb 2 f0; 1; 2g

	

25



Suppose now that we allow the buyer to choose any contract from (Qa; Qb) 2 �0 at price

t (Qa; Qb) determined in Step 2. Denote the utility from this new mechanism by bU . Since
we are just removing options from the original mechanism, we should have bU (v) � U (v) for
every v 2 �.

Similarly to Step 2 consider the optimal choice correspondence b� : � � �0, correspon-

dence bs : �� f0; 1; 2g, and sets bIb (�) for every � 2 [v � v; v � v]. Similarly to Step 2 make
a mechanism adjustment so that all types in bIb (�) are assigned some contract such thatbpa1 (v) + bpb1 (v) = 1, bpa2 (v) + bpb2 (v) = 0.
De�ne b�1 = fv 2 � : bpa1 (v) + bpb1 (v) = 1g. Let us determine how b�1 compares with

�1 as a result of the changes made in this step. First, note that the buyer�s types who

previously where assigned contracts that delivered exactly 0, 1, or 2 units, still have their

choices available and thus their assignments do not change. Next, we argue that every type

v = (va; vb) that previously received total expected quantity in (1; 2) will self-select into some

contract that delivers either quantity 1 or 2. Let � = va� vb. We know that vb > v0b for every

v0b 2 Ib (�). Since Ib (�) � bIb (�), we know by Lemma 4 that v has to choose contracts with
quantity at least as high as contracts chosen by types in Ib (�), i.e. v has to choose contracts

that deliver quantity 1 or 2. The argument that the buyer�s types who were previously getting

expected quantity in (0; 1) will all self-select into contracts that deliver quantity either 0 or

1 is similar.

Thus �1 � b�1, and all types in b�1n�1 receive exactly one unit. From (4) in Lemma 5 we
know that contribution of types in b�1n�1 to the costs is zero. Thus we can use �1 in place
of b�1 when writing down the expression of expected pro�t from the adjusted mechanism

according to formula given in Lemma 5.
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The di¤erence in pro�t between the new and the original mechanisms is

X
i=a;b

Z v

v

�
U (v; v�i)� bU (v; v�i)� (v � c1) f (v; v�i) dv�i

+

Z
�

�
U (v)� bU (v)� 3f (v) +X

i=a;b

(vi � c1)
@f (v)

@vi

!
dv

��c
Z
@�1

�
U (v)� bU (v)�n (v) f (v) dv +�c Z

�1

�
U (v)� bU (v)� X

i=a;b

@f (v)

@vi

!
dv

=
X
i=a;b

Z v

v

�
U (v; v�i)� bU (v; v�i)� (v � c1 ��c1v2�1) f (v; v�i) dv�i

+

Z
�

�
U (v)� bU (v)�"3f (v) +X

i=a;b

(vi � c1 ��c1v2�1)
@f (v)

@vi

#
dv

� 0

where the expression before the equality takes into account bU (v) = U (v) for v 2 @�;

the equality holds because bU (v) = U (v) for v 2 @�1 \ @�, and bU (v) = U (v) for v 2

@�1 \ interior (�) (since all these types receive exactly one unit); the inequality is due to

condition (1) and the fact that bU (v) � U (v) for all v.
Proof of Proposition 2. First note that in a symmetric environment there is no loss for

the seller in using symmetric mechanisms.20

Next we show that it is without loss for the seller to use mechanisms that ask the buyer

to report whether he wants 0, 1, or 2 units, and the di¤erence in valuations � = va � vb.

By Proposition 1 there is no loss for the seller in o¤ering mechanisms that provide either

0 units (pij (v) = 0 for i = a; b, j = 1; 2), or 1 unit (pa1 (v) + pb1 (v) = 1, pi2 (v) = 0 for

i = a; b), or 2 units (paj (v) + pbj (v) = 1 for j = 1; 2) in total. By Lemma 3 buyer with type

(v; v) gets 0 units and pays 0. Thus by IC all other buyer�s types that receive 0 units pay 0

as well.
20See, for example, Section 1 in Maskin and Riley (1984).
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Consider types v, v0 2 � such that (i) each type gets exactly one unit; (ii) va � vb =

v0a � v0b = � for some �. Note that

U (v) � vapa1 (v
0) + vbpb1 (v

0)� T (v0) = �pa1 (v0) + vb � T (v0)

= �pa1 (v
0) + v0b � T (v0) + (vb � v0b) = U (v0) + (vb � v0b)

where the inequality is due to IC, and the �rst two equalities make use of (i) and (ii). Similarly

U (v0) � U (v) + (v0b � vb) .

Hence

U (v) = U (v0) + (vb � v0b)

i.e. all types with a given di¤erence in valuations � that receive one unit are indi¤erent

between sending each other�s messages. Denote � = v�v. For every � 2
�
0; �
�
let us pick one

speci�c type v that receives one unit (if there are such types) and assign the contract that

he receives to all the other types that were receiving one unit. Let us introduce the following

notation: q1 (�) = pa1 (v), t1 (�) = T (v), u1 (�) = �q1 (�) � t1 (�). For every � 2
�
��; 0

�
we

de�ne q1 (�), t1 (�), u1 (�) in a symmetric way. Note that these changes do not a¤ect utilities

U and set �1 = fv 2 � : pa1 (v) + pb1 (v) = 1g.

Similarly note that for every pair of types v, v0 2 � such that (i) each type gets exactly

two units; (ii) va � vb = v0a � v0b = � for some � 2 R, we have

U (v) = U (v0) + 2 (vb � v0b)

For every � 2
�
0; �
�
let us pick one speci�c type v that receives two units (if there are such

types) and assign the the contract that he receives to all the other types that were receiving

two units. Introduce notation: q2 (�) = pa1 (v)+pa2 (v), t2 (�) = T (v), u2 (�) = �q2 (�)�t2 (�).

For every � 2
�
��; 0

�
we de�ne q2 (�), t2 (�), u2 (�) in a symmetric way. Once again these
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changes do not a¤ect utilities U and set �1.

By Lemma 5 the expected pro�t is completely determined by U and set �1, and thus

the above changes do not a¤ect the expected pro�t. Hence, there is no loss for the seller in

using mechanisms that ask the buyer to report whether he wants 0, 1, or 2 units, and the

di¤erence in valuations.

Next we rewrite Program I using the new notation and taking into account the above

observations.

F constraints on pij imply that q1 (�) 2 [0; 1], q2 (�) 2 [0; 2] for every � 2
�
0; �
�
. Symmetry

of the mechanism implies that buyers with � � 0 must get larger expected quantities of their

preferred goods: q1 (�) � 1� q1 (�) and q2 (�) � 2� q2 (�). Otherwise it would be pro�table

for buyer with � to report ��. Combine the above constraints with feasibility constraints to

get q1 (�) 2 [0:5; 1], q2 (�) 2 [1; 2].

IR constraints are automatically satis�ed because the null contract at zero price is avail-

able.

IC constraints require that each type with a given di¤erence in valuations who decides to

purchase a given number of units should �nd it optimal to report the di¤erence in valuations

truthfully. This implies

�qj (�)� tj (�) � �qj (�0)� tj (�0) for every �; �0 2
�
0; �
�
, j = 1; 2 (5)

We can use a standard argument to show that these constraints can be equivalently repre-

sented by an envelope formula and monotonicity constraint as stated in Program 2.21

21It may happen the set of buyer�s types who buy j units contains only a subset of di¤erences in the
valuations [0; v � v]. In such a case the mechanism can be extended to be de�ned for all di¤erences in the
valuations.
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Denote by gj (u1 (�) ; u2 (�) ; �) the measure of types with di¤erence in the valuations �

who buy j units. Then the expected pro�t is

E

"
T (v)�

X
i=a;b

X
j=1;2

cjpij (v)

#

=
�R
��

 X
j=1;2

 
tj (�)�

jX
k=1

ck

!
gj (u1 (�) ; u2 (�) ; �)

!
d�

= 2
�R
�0

 X
j=1;2

 
�qj (�)� uj (�)�

jX
k=1

ck

!
gj (u1 (�) ; u2 (�) ; �)

!
d�

where the �rst equality uses the fact that the types who buy zero units pay zero, the second

equality uses symmetry of the mechanism and de�nition of tj (�).

6.2 Proofs for Section 3.2

Proof of Proposition 3. (i) From Step 1 in the proof of Proposition 1 we know that it

is without loss to consider mechanisms where for any given � � 0 the highest possible type

vb = v � � buys 2 units.

(ii) Note that q2 (�) 2 [1; 2] is nondecreasing. Thus if q2 (�0) = 2 for some � 2
�
0; �
�
, then

q2 (�) = 2 for every � 2
�
�0; �

�
.

If q2 (�) < 2 for every � 2
�
0; �
�
, then adjust the contract for � as follows: bq2 ��� = 2,bt2 ��� = t2

�
�
�
+ �

�
2� q2

�
�
��
. It is easy to see that a such change satis�es IC, does not

change the utilities of either types, and does not a¤ect the expected pro�t since there is only

a single type with �: (v; v) =
�
v + �; v

�
.

(iii) By Lemma 3 we know that it is without loss to consider mechanisms such that type

(va; vb) = (v; v) buys nothing. We will argue that there is a subset of types of �, that includes

(v; v), which also buy nothing.

Suppose not. Then consider raising all prices t1 (�) and t2 (�) for every � by a small " > 0.

Types such that U (v) � " will continue to make the same purchasing choices as before.

Types such that U (v) < " will now buy nothing.
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Note that @
@vi
U (v) = pi (v) � 0 for a.e. v. Moreover, @

@va
U (va; v), @

@vb
U (v; vb) � 0:5 for

every va; vb 2 [v; v]. Thus fv 2 � : U (v) < "g � [v; v + 2"]2.

Next note that there exists M > 0 such that f (v) < M for every v 2 �. Pro�t from

every type is bounded by 2v � c1 � c2. Thus the loss from rasing all prices by a small "

is at most (2v � c1 � c2) 4M"2, while the gain is at least " (1� 4M"2). Hence, such a price

adjustment is pro�table which gives a contradiction.

(iv) From Step 2 in the proof of Proposition 1 we know that it is without loss to consider

mechanisms where for any given � if we start from the highest possible vb = v � � keep

reducing vb, then eventually we pass through a region of vb that choose one unit, and get to

region of vb that buy nothing. Now restrict attention only to vb such that (vb + �; vb) 2 �,

and the result follows.

Lemma 6

g1 (u1 (�) ; u2 (�) ; �) =

8>>>><>>>>:
R u1(�)�u2(�)
�u1(�) f (vb + �; vb) dvbR u1(�)�u2(�)
v

f (vb + �; vb) dvb

0

if

if

if

� 2 [0; �1]

� 2 [�1; �2]

� 2
�
�2; �

�
g2 (u1 (�) ; u2 (�) ; �) =

8><>:
R v��
u1(�)�u2(�)f (vb + �; vb) dvbR v��
v
f (vb + �; vb) dvb

if

if

� 2 [0; �2]

� 2
�
�2; �

�
where �1; �2 are uniquely determined such that 0 � �1 � �2 � �, u1 (�1) + v = 0, and

u2 (�2)� u1 (�2) + v = 0.

Proof. Fix � � 0. All types vb that buy one unit satisfy u1 (�) � u2 (�)+vb and u1 (�)+vb � 0

which can be written as

u1 (�)� u2 (�) � vb � �u1 (�) (6)
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From the proof of part (iv) of Proposition 3 we know that such types vb exist. Since feasible

vb � v, the measure of types that buy one unit for given � is

g1 (u1 (�) ; u2 (�) ; �) =

8>>>><>>>>:
R u1(�)�u2(�)
�u1(�) f (vb + �; vb) dvbR u1(�)�u2(�)
v

f (vb + �; vb) dvb

0

if

if

if

�u1 (�) > v

u1 (�)� u2 (�) > v � �u1 (�)

v � u1 (�)� u2 (�)

All types vb that buy two units satisfy u2 (�) + vb � u1 (�) and u2 (�) + 2vb � 0. From

part (i) of Proposition 3 we know that the highest possible type vb = v � � buys 2 units.

Combining all this gives v � � � vb � max
�
u1 (�)� u2 (�) ;�1

2
u2 (�)

	
.

Note that (6) implies u1 (�) � u2 (�) � �1
2
u2 (�). Hence, types vb that buy two units

satisfy

v � � � vb � u1 (�)� u2 (�) (7)

Since feasible vb � v, the measure of types that buy two units for given � is

g2 (u1 (�) ; u2 (�) ; �) =

8><>:
R v��
u1(�)�u2(�)f (vb + �; vb) dvbR v��
v
f (vb + �; vb) dvb

if

if

u1 (�)� u2 (�) > v

v � u1 (�)� u2 (�)

By Lemma 3 the lowest type (v; v) buys 0 units at zero price, i.e. u1 (0) + v � 0.

Combining (6) and (7) we have u1 (�) + v� � � 0 for every � 2
�
0; �
�
where � = v� v. Thus

u1
�
�
�
+ v � 0. Also note that u1 (�) + v is continuous, and d

d�
(u1 (�) + v) = q1 (�) > 0 for

a.e. �. Thus there there exists unique �1 2
�
0; �
�
such that u1 (�1) + v = 0.

Using (6) we get u2 (0) � u1 (0) + v � u1 (0) + v, and it was previously shown that

u1 (0) + v � 0. Hence u2 (0)� u1 (0) + v � 0. Using (7) we get u2
�
�
�
� u1

�
�
�
+ v � 0. Also

note that u2 (�)� u1 (�) + v is continuous, and d
d�
(u2 (�)� u1 (�) + v) = q2 (�) > 0 for a.e. �.

Thus there there exists unique �2 2
�
0; �
�
such that u2 (�2)� u1 (�2) + v = 0. Note that (6)

ensures that �2 � �1.
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Hence, g1 (u1 (�) ; u2 (�) ; �) and g2 (u1 (�) ; u2 (�) ; �) can be written as in the statement of

the result.

Next we formulate the seller�s problem as an optimal control problem and obtain condi-

tions for optimality. The approach is similar to that in Pavlov (2011b) and relies on optimal

control tools that can be found for example in Chapter 3.3 in Seierstad and Sydsæter (1987).

max
(zj ;qj ;uj)j=1;2

�R
0

 X
j=1;2

 
�qj (�)� uj (�)�

jX
k=1

ck

!
gj (u1 (�) ; u2 (�) ; �)

!
d�

subject to

Feasibility: q1 (�) � 1
2
, q2 (�) � 1 �

1
(�) ; �

2
(�)

1� q1 (�) � 0, 2� q2 (�) � 0 �1 (�) ; �2 (�)

Incentive Compatibility:
�
u1 (�) = q1 (�) ;

�
u2 (�) = q2 (�) �1 (�) ; �2 (�)

�
q1 (�) = z1 (�) ;

�
q2 (�) = z2 (�) �1 (�) ; �2 (�)

z1 (�) � 0; z2 (�) � 0 �1 (�) ; �2 (�)

Transversality conditions: q1 (0) ; q1
�
�
�
; u1 (0) ; u1

�
�
�
; q2 (0) ; q2

�
�
�
; u2 (0) ; u2

�
�
�
are free

Next we derive the necessary conditions for optimality. Form the Lagrangian

L = (�q1 � u1 � c1) g1 (u1; u2; �) + (�q2 � u2 � c1 � c2) g2 (u1; u2; �)

+�1q1 + �1z1 + �1

�
q1 �

1

2

�
+ �1 (1� q1) + �1z1

+�2q2 + �2z2 + �2 (q2 � 1) + �2 (2� q2) + �2z2

First we maximize L with respect to z1 and z2.

L� = (�q1 � u1 � c1) g1 (u1; u2; �) + (�q2 � u2 � c1 � c2) g2 (u1; u2; �)

+�1q1 + �1

�
q1 �

1

2

�
+ �1 (1� q1)

+�2q2 + �2 (q2 � 1) + �2 (2� q2)
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with conditions

�1z1 = 0, �1 = ��1 � 0 and
�
q1 = z1 � 0 (8)

�2z2 = 0, �2 = ��2 � 0 and
�
q2 = z2 � 0 (9)

Next we get a system of Hamiltonian equations:

8>>>>>>><>>>>>>>:

�
�1 = �@L�

@u1
= g1 � (�q1 � u1 � c1) @g1@u1

� (�q2 � u2 � c1 � c2) @g2@u1
�
�1 = �@L�

@q1
= ��g1 � �1 � �1 + �1

�
�2 = �@L�

@u2
= � (�q1 � u1 � c1) @g1@u2

+ g2 � (�q2 � u2 � c1 � c2) @g2@u2
�
�2 = �@L�

@q2
= ��g2 � �2 � �2 + �2

(10)

The transversality conditions imply the following boundary requirements for �1; �2; �1; �2:

�1 (0) = �1
�
�
�
= �2 (0) = �2

�
�
�
= 0 (11)

�1 (0) = �1
�
�
�
= �2 (0) = �2

�
�
�
= 0 (12)

Co-state variables �1; �2; �1; �2 are continuous throughout. Moreover, �1 (�2) is equal to zero

at the points where the state variable q1 (q2) jumps. The remaining conditions are

�
1

�
q1 �

1

2

�
= 0, �

1
� 0 and q1 �

1

2
(13)

�1 (1� q1) = 0, �1 � 0 and q1 � 1

�
2
(q2 � 1) = 0, �2 � 0 and q2 � 1 (14)

�2 (2� q2) = 0, �2 � 0 and q2 � 2 (15)

De�ne marginal pro�t functions as follows:

Vj (�) = �gj (u1 (�) ; u2 (�) ; �) + �j (�) for j = 1; 2 (16)
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Note that Vj (0) = Vj
�
�
�
= 0 for j = 1; 2. Thus

�
V 1 = 2g1 + �

�
@g1
@u1

q1 +
@g1
@u2

q2 +
@g1
@�

�
� (�q1 � u1 � c1)

@g1
@u1

� (�q2 � u2 � c1 � c2)
@g2
@u1

= 2g1 + �
@g1
@�

+ (u1 + c1)
@g1
@u1

+ (u2 + c2)
@g2
@u1

�
V 2 = 2g2 + �

�
@g2
@u1

q1 +
@g2
@u2

q2 +
@g2
@�

�
� (�q1 � u1 � c1)

@g1
@u2

� (�q2 � u2 � c1 � c2)
@g2
@u2

= 2g2 + �
@g2
@�

+ (u1 + c1)
@g1
@u2

+ (u2 + c2)
@g2
@u2

where the second inequality in both cases uses the fact that @g2
@u1

= @g1
@u2
.

Next we derive the so-called �ironing�necessary conditions for optimality.

Lemma 7 (i) If qj is strictly increasing on (�
0; �00), then Vj (�) = 0 on this interval.

(ii) If qj (�) =
j
2
on (�0; �00), then �0 = 0, Vj (�

00) = 0,
R �00
�0 Vj

�e�� de� � 0, and R �00
�
Vj

�e�� de� �
0 for every � 2 (�0; �00).

(iii) If qj is a constant in
�
j
2
; j
�
on (�0; �00), then Vj (�

0) = Vj (�
00) = 0,

R �00
�0 Vj

�e�� de� = 0,

and
R �00
�
Vj

�e�� de� � 0 for every � 2 (�0; �00).
(iv) If qj (�) = j on (�

0; �00), then Vj (�
0) = 0, �00 = �,

R �00
�0 Vj

�e�� de� � 0, and R �
�0Vj

�e�� de� � 0
for every � 2 (�0; �00).

Proof. (i) If qj is strictly increasing on (�
0; �00), then �

j
(�) = �j (�) = 0 and �j (�) =

��j (�) = 0 on (�0; �00). Thus
�
�1 (�) = 0, which implies Vj (�) = 0 on (�

0; �00).

(ii) Let j = 1 (the case of j = 2 is similar). Suppose q1 (�) = 1
2
on (�0; �00). Because of

monotonicity of q1 and constraint q1 (�) � 1
2
8�, we must have �0 = 0. The transversality

conditions require �1 (0) = �1 (0) = 0, and we also have �
1
(�) � 0, �1 (�) = 0 on (0; �00).

Thus
�
�1 (�) = �V1 (�)� �1 (�), and so �1 (�) = �

R �
0
V1

�e�� de� � R �
0
�
1

�e�� de� on (0; �00).
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If �00 = �, then g1
�
u1
�
�
�
; u2
�
�
�
; �
�
= 0 and �1

�
�
�
= 0, and so Vj

�
�
�
= 0. Note that

�1
�
�
�
= 0 implies

0 = �1
�
�
�
� �1 (0) = �

Z �

0

V1

�e�� de� � Z �

0

�
1

�e�� de� � �Z �

0

V1

�e�� de�
Similarly, �1 (�) � 0 for every � implies

0 � �1
�
�
�
� �1 (�) = �

Z �

�

V1

�e�� de� � Z �

�

�
1

�e�� de� � �Z �

�

V1

�e�� de�
If �00 < �, then �1 (�

00) = 0 because q1 changes at �
00. Note that �1 (�) � 0 for every �,

�
�1
�
�00�
�
= �V1

�
�00�
�
� �

1

�
�00�
�
, and

�
�1
�
�00+
�
= �V1

�
�00+
�
+ �1

�
�00+
�
. Since V1 is continuous at

�00, we have
�
�1
�
�00�
�
� �V1 (�00) �

�
�1
�
�00+
�
. On the other hand �1 (�) � 0 and �1 (�

00) = 0

imply that
�
�1
�
�00�
�
�

�
�1
�
�00+
�
. Thus

�
�1
�
�00�
�
=

�
�1
�
�00+
�
= �V1 (�00) = 0. The argument forR �00

�0 Vj

�e�� de� � 0, and R �00
�
Vj

�e�� de� � 0 is similar to the case when �00 = �.
The proofs of (iii) and (iv) are similar to the proof of (ii).

Calculations for Example 1

Note that

g1 (u1 (�) ; u2 (�) ; �) =

8>>>><>>>>:
2u1 (�)� u2 (�)

u1 (�)� u2 (�)� c

0

if

if

if

� 2 [0; �1)

� 2 (�1; �2]

� 2 (�2; 1]

g2 (u1 (�) ; u2 (�) ; �) =

8><>: c+ 1� � + u2 (�)� u1 (�)

1� �

if

if

� 2 [0; �2)

� 2 (�2; 1]

where �1,�2 are such that

c+ u1 (�1) = 0 (17)

c+ u2 (�2)� u1 (�2) = 0
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Using the earlier calculated general formulas:

�
V1 (�) =

8>>>><>>>>:
6u1 (�)� 3u2 (�)� c

3u1 (�)� 3u2 (�)� 3c

0

if

if

if

� 2 [0; �1)

� 2 (�1; �2]

� 2 (�2; 1]

(18)

��
V1 (�) =

8>>>><>>>>:
6q1 (�)� 3q2 (�)

3q1 (�)� 3q2 (�)

0

if

if

if

� 2 [0; �1)

� 2 (�1; �2]

� 2 (�2; 1]

Hence V1 (weakly) concave on (�1; �2] and is ambiguous on [0; �1). Notice that
�
V 1 is discon-

tinuous at �1 since c > 0:

�
V1 (�1�) = 6u1 (�1)� 3u2 (�1)� c = 3u1 (�1)� 3u2 (�1)� 4c

� 3u1 (�1)� 3u2 (�1)� 3c =
�
V1 (�1+)

Also note that
�
V 1 is continuous at �2:

�
V1 (�2�) = 3u1 (�2)� 3u2 (�2)� 3c = 0 =

�
V1 (�2+)

Next note that

�
V2 (�) =

8><>: 3c+ 2 + 3 (u2 (�)� u1 (�))� 3�

2� 3�

if

if

� 2 [0; �2)

� 2 (�2; 1]

��
V2 (�) =

8><>: 3 (q2 (�)� q1 (�))� 3

�3

if

if

� 2 [0; �2)

� 2 (�2; 1]

Hence V2 is concave on (�2; 1] and is ambiguous on [0; �2). Notice that
�
V2 is continuous at �2:
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�
V2 (�2�) = 3c+ 2 + 3 (u2 (�2)� u1 (�2))� 3�2 = 2� 3�2 =

�
V 2 (�2+)

Recall that Vj (0) = Vj (1) = 0 for j = 1; 2. Note that

0 = V2 (1)� V2 (0) =
Z �2

0

�
V2 (�) d� +

Z 1

�2

�
V2 (�) d� = �

Z �2

0

��
V2 (�) �d� �

Z 1

�2

��
V2 (�) �d� +

�
V2 (1)

= �
Z �2

0

3 (q2 (�)� q1 (�)) �d� +
Z 1

0

3�d� � 1 = �
Z �2

0

3 (q2 (�)� q1 (�)) �d� +
1

2

or Z �2

0

3 (q2 (�)� q1 (�)) �d� =
1

2
(19)

Next note that

0 = V1 (1)� V1 (0) =
Z �1

0

�
V1 (�) d� +

Z �2

�1

�
V1 (�) d�

=

�
�
V1 (�1�)�

�
V1 (�1+)

�
�1 �

Z �1

0

��
V1 (�) �d� �

Z �2

�1

��
V1 (�) �d�

= �c�1 �
Z �1

0

3q1 (�) �d� + 3

Z �2

0

(q2 (�)� q1 (�)) �d�

Using (6) we get

c�1 +

Z �1

0

3q1 (�) �d� =
1

2
(20)

By Proposition 3 we know that q2 (�) = 2 for � su¢ ciently high. Let in the optimal

mechanism q2 (�) = 2 whenever � 2 (t; 1].

Lemma 8 (i) There exists t 2 [0; �2) such that q2 (�) = 2 i¤ � 2 (t; 1] :

(ii) If t > 0, then V2 (�) = 0 for every � 2 [0; t).

Proof. (i) By (19) we have 1
2
�
R �2
0
3
�
2� 1

2

�
�d� = 9

4
�22. Thus �2 �

p
2
3
.

Note that for � 2 (�2; 1] we have

V2 (�) = V2 (1)�
Z 1

�

�
V2

�e�� de� = �Z 1

�

�
2� 3e�� de� = 1

2
(3� � 1) (1� �)
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Since �2 �
p
2
3
, we have V2 (�) > 0 for every � 2 (�2; 1). Thus by Lemma 7 q2 (�) = 2 on

(�2; 1) and there exists t 2 [0; �2) such that q2 (�) = 2 i¤ � 2 (t; 1].

(ii) Suppose q2 (�) = k < 2 i¤ � 2 (t0; t00). By Lemma 7 we have V2 (t0) = V2 (t00) = 0.

Suppose �rst that V2 (�) � 0 for every � 2 (t0; t00) with inequality being strict at some

point. Then by Lemma 7 we must have k = 1. Since by (i) we have t00 < �2, we have
��
V2 (�) = 3 (q2 (�)� q1 (�)) � 3 = �3q1 (�) < 0 for every � 2 (t0; t00). Thus V2 is concave on

(t0; t00), which together with V2 (t0) = V2 (t00) = 0 implies V2 (�) = 0 for every � 2 (t0; t00). But

this contradicts the assumption that V2 is strictly negative at some point.

Suppose that V2 is strictly positive at some point in �
� 2 (t0; t00). Note that by Lemma 7

it is impossible that V2 (�) � 0 for every � 2 (t0; t00), and there must exist t� 2 (��; t00) such

that V2 (t�) = 0 and V2 (�) < 0 for some � 2 (t�; t00). Note that
��
V2 (�) = 3 (k � q1 (�)) � 3 is

nonincreasing on (t0; t00).

Let
��
V2 (�) � 0 for every � 2 (t�; t00). Then V2 is concave on (t�; t00), which together with

V2 (t
�) = V2 (t

00) = 0 implies V2 (�) = 0 for every � 2 (t�; t00). But this contradicts the

assumption that V2 is strictly negative at some point on (t�; t00).

Now suppose that
��
V2 changes sign on (t�; t00), and thus

��
V2 (�) > 0 for every � 2 (t0; t�).

Then V2 is strictly convex on (t0; t�), which together with V2 (t0) = V2 (t�) = 0 implies V2 (�) <

0 for every � 2 (t0; t�). But this contradicts the assumption that V2 is strictly positive at

some point on (t0; t�).

Case 1 q2 (�) = 2 for every � 2 [0; 1]

Since V2 (0) = 0 and V2 is convex on (0; �2), by Lemma 7 the condition for optimality of

q2 (�) = 2 for every � 2 [0; 1] simpli�es to
�
V2 (0) � 0, or

3c+ 2 + 3 (u2 (0)� u1 (0)) � 0 (21)

From (18) it follows that V1 is concave on (0; �1), and concave on (�1; �2). Also recall that
�
V1 (�1�) �

�
V2 (�1+). Notice also that (17) implies that

�
V1 (�2) = 0, and so V1 is increasing on
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(�1; �2). Since V1 (0) = V1 (�2) = 0, we have that V1 crosses zero on (0; �1) at most once, and

this crossing is from above. It follows from Lemma 7 that q1 is constant on (0; �2).

Denote q1 (�) = � for every � 2 [0; 1]. Conditions (17), (19) and (20) become

c+ u1 (0) + ��1 = 0

c+ u2 (0)� u1 (0) + (2� �) �2 = 0
3

2
(2� �) �22 =

1

2

c�1 +
3�

2
�21 =

1

2

The solution is

�1 =
1

3�

�p
c2 + 3�� c

�
, �2 =

1p
3 (2� �)

u1 (0) = �
1

3

p
c2 + 3�� 2

3
c, u2 (0) = u1 (0)� c�

1

3

p
3 (2� �)

Note that condition (21) simpli�es to � � 2
3
.

Next note that

Z �2

0

V1 (�) d� = �
Z �1

0

�
V1 (�) �d� �

Z �2

�1

�
V1 (�) �d�

= �1
2

�
�
V1 (�1�)�

�
V1 (�1+)

�
�21 +

1

2

Z �1

0

��
V1 (�) �

2d� +
1

2

Z �2

�1

��
V1 (�) �

2d�

=
1

2
c�21 +

1

6
(6�� 6) �31 +

1

6
(3�� 6)

�
�32 � �31

�
=

1

6

 p
c2 + 3�+ 2c�p
c2 + 3�+ c

�2 � 1p
3 (2� �)

!

where the �rst equality is due to V1 (�2) = 0 and continuity of V1; the second equality is due

to
�
V1 (�2) = 0 and continuity of

�
V1 everywhere except at �1; the third equality uses formulas

for
��
V1 and the facts that q1 (�) = � and q2 (�) = 2 on (0; �2); the fourth equality comes from

substituting expressions for �1 and �2.
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Denote the resulting expression by � (c; �). Note that

d

dc

 p
c2 + 3�+ 2c�p
c2 + 3�+ c

�2
!
=

�3c
p
c2 + 3�

�p
c2 + 3�+ c

�2 (22)

and p
c2 + 3�+ 2c�p
c2 + 3�+ c

�2 = 1p
c2 + 3�+ c

+
c�p

c2 + 3�+ c
�2 (23)

Thus � is strictly decreasing in � and in c for c > 0, � 2
�
1
2
; 1
�
. Thus there exists a strictly

decreasing function � (c) implicitly de�ned by � (c; �) = 0, with � (0) = 1 (since � (0; 1) = 0)

and � (1) = 2
3
(since �

�
1; 2

3

�
= 0).

Thus the optimality conditions of Lemma 7 are satis�ed when � = � (c) for every c 2 (0; 1].

The price for q1 = � (c) and q2 = 2 are T1 = �u1 (0) and T2 = �u2 (0), respectively, evaluated

at � = � (c).

The expected pro�t is

Pr f� jva � vbj+min fva; vbg � T1 � 0gT1

+Pr f2max fva; vbg � T2 � � jva � vbj+min fva; vbg � T1g (T2 � T1 � c)

=

�
1� 1

9�

�p
c2 + 3�� c

�2��1
3

p
c2 + 3�+

2

3
c

�
+
2

3

�
1

3

p
3 (2� �)

�

Case 2 q2 (�) = 2 only 8� 2 (t; 1] where t 2 (0; �2).

By Lemma 8 on [0; t) we have

�
V2 (�) = 3c+ 2 + 3 (u2 (�)� u1 (�))� 3� = 0

and thus
��
V 2 (�) = 3 (q2 (�)� q1 (�)� 1) = 0 (24)

�
V2 (0) = 0 implies
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u2 (0)� u1 (0) = �c�
2

3
(25)

Since V2 (t) = 0 and V2 is convex on (t; �2), by Lemma 7 the condition for optimality

of q2 (�) = 2 for every � 2 [0; 1] simpli�es to
�
V2 (t) � 0. This condition is satis�ed since

�
V2 (�) = 0 on [0; t) and

�
V2 is continuous.

Note that on [0;min ft; �1g) we have

��
V1 (�) = 6q1 (�)� 3q2 (�) = 3q2 (�)� 6 < 0

where the second equality follows from (24). Hence V1 is concave on [0;min ft; �1g), and by

Lemma 7 it must be that q1 is constant. Denote q1 (�) = � on [0;min ft; �1g), and note that

q2 (�) = �+ 1 on this interval.

If �1 � t, then using an argument identical to Case 1 we �nd that q1 is constant on (0; �2).

If t < �1, then the facts that
�
V 1 is continuous at t and V1 is weakly concave on (t; �1) again

imply that q1 is constant on (0; �2).

Thus like in Case 1 we have

�1 =
1

3�

�p
c2 + 3�� c

�
, u1 (0) = �

1

3

p
c2 + 3�� 2

3
c

The second part of condition (17) and condition (19) in this case are

c+ u2 (0) + (1 + �) t+ 2 (�2 � t)� u1 (0)� ��2 = 0
3

2
t2 +

3

2
(2� �)

�
�22 � t2

�
=
1

2

Using (25) we �nd that

t =
2

3
� 1
3

r
2� �
1� � , �2 =

2

3
� 1
3

r
1� �
2� �

Note that t � 0 i¤ � � 2
3
.
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Next note that

Z �2

0

V1 (�) d� = �
1

2

�
�
V1 (�1�)�

�
V1 (�1+)

�
�21 +

1

2

Z �1

0

��
V1 (�) �

2d� +
1

2

Z �2

�1

��
V1 (�) �

2d�

=
1

2
c�21 +

1

2

Z �1

0

6��2d� +
1

2

Z �2

�1

3��2d� � 1
2

Z t

0

3 (1 + �) �2d� � 1
2

Z �2

t

3 (2) �2d�

=
1

2
c�21 + ��

3
1 +

�

2

�
�32 � �31

�
� 1 + �

2
t3 �

�
�32 � t3

�
=

p
c2 + 3�+ 2c

6
�p
c2 + 3�+ c

�2 � 1
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2 +

r
2� �
1� � +

r
1� �
2� �

!

where the �rst equality is obtained in the same way as in Case 1; the second equality uses

formulas for
��
V1 and the facts that q1 (�) = � on (0; �2) and q2 (�) = 1 + � on (0; t) and = 2

on (t; 1); the fourth equality comes from substituting expressions for �1 and �2.

Denote the resulting expression by 	(c; �). Note that 2��
1�� is increasing in �,

q
2��
1�� > 1

for � � 1
2
, and x+ 1

x
is increasing for x > 1. Thus, using (22) and (23), 	 is strictly decreasing

in � and in c for c > 0, � 2
�
1
2
; 1
�
. Thus there exists a strictly decreasing function � (c)

implicitly de�ned by 	(c; �) = 0, with � (1) = 2
3
(since 	

�
1; 2

3

�
= 0) and � (c�) = 1

2
for

c� � 1:22 such that 	
�
c�; 1

2

�
= 0). Note that 	

�
c; 1
2

�
< 0 for every c > c�, and thus we

denote � (c) = 1
2
for this range of c.

Thus the optimality conditions of Lemma 7 are satis�ed when � = � (c) for every c � 1.

The price for q1 = � (c) is T1 = �u1 (0), for q2 = 1 + � (c) is T 2 = �u2 (0), and for q2 = 2 is

T 2 = �u2 (0) + tq2 (t+)�
R t
0
q2 (�) d� = �u2 (0) + (1� �) t, evaluated at � = � (c).
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The expected pro�t is

Pr f� jva � vbj+min fva; vbg � T1 � 0gT1

+Pr

8><>: (1 + �) jva � vbj+ 2min fva; vbg � T 2 �

max
�
2max fva; vbg � T 2; � jva � vbj+min fva; vbg � T1

	
9>=>; (T 2 � T1 � c)

+Pr

8><>: 2max fva; vbg � T 2 �

max f(1 + �) jva � vbj+ 2min fva; vbg � T 2; � jva � vbj+min fva; vbgg

9>=>;�T 2 � T1 � c�

=

�
1� 1

9�

�p
c2 + 3�� c

�2��1
3

p
c2 + 3�+

2

3
c

�
+
2

9

 
2�

r
2� �
1� �

!�
2

3

�

+
2

9

 
1 +

r
2� �
1� �

! 
2

3
+ (1� �)

 
2

3
� 1
3

r
2� �
1� �

!!

6.3 Proofs for Section 3.3

Proof of Proposition 4. Suppose the optimal joint selling solution o¤ers: (0; 0) at a price

0; (1; 0) and (0; 1) at a price x; (2; 0) and (0; 2) at a price y. Clearly x > 0, and also y�x > x

because otherwise no one would choose to buy 1 unit.

Consider the following mechanisms for separate selling of units 1 and 2. To sell the �rst

unit the seller o¤ers: (0; 0) at a price 0; (1; 0) and (0; 1) at a price x. To sell the second unit

the seller o¤ers: (0; 0) at a price 0; (1; 0) and (0; 1) at a price y � x.

Note that the seller obtains the same expected pro�t from separate selling as from the

optimal joint selling. Since the pro�t from separate selling of the two units cannot exceed the

optimal pro�t from joint selling it must be that the above mechanisms for separate selling

are optimal.

Calculations for Example 3

As before we can focus on symmetric mechanism and just consider the case va � vb. For

every v we can �nd type ev such that eva = 1, and such that there exists s 2 [0; 1] such that
v = sev. Let us change variables from (va; vb) to (s; evb). The Jacobian transform is s.
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The expected pro�t is

Z 1

0

Z va

0

 X
i=a;b

X
j=1;2

(vi � cj) pij (v)� U (v)
!
dvbdva

=

Z 1

0

Z 1

0

 X
j=1;2

((s� cj) paj (s; sevb) + (sevb � cj) pbj (s; sevb))� U (s; sevb)! sdsdevb
The envelope condition implies

U (s; sevb) = U (0) +

Z s

0

d

ds
[U (es; esevb)] des = U (0) + Z s

0

�
@U (es; esevb)
@va

+ evb@U (es; esevb)
@vb

�
des

= U (0) +

Z s

0

 X
j=1;2

(paj (es; esevb) + evbpbj (es; esevb))! des
Thus

Z 1

0

U (s; sevb) sds
= U (0)

�
1

2

Z 1

0

ds2
�
+

" Z s

0

 X
j=1;2

(paj (es; esevb) + evbpbj (es; esevb))! des!�1
2

Z s

0

des2�#1
0

�
Z 1

0

 X
j=1;2

(paj (s; sevb) + evbpbj (s; sevb))!�1
2

Z s

0

des2� ds
=

1

2
U (0) +

Z 1

0

 X
j=1;2

(paj (s; sevb) + evbpbj (s; sevb))! 1� s2
2

ds

Hence the expected pro�t is

Z 1

0

Z 1

0

 X
j=1;2

��
s� 1� s

2

2s
� cj

�
paj (s; sevb) + �evb�s� 1� s2

2s

�
� cj

�
pbj (s; sevb)�! sdsdevb

�1
2
U (0)

Pointwise maximization yields for j = 1; 2: pbj (s; sevb) = 0; and paj (s; sevb) = 0 if

s
�
1� 1�s2

2s2

�
� cj < 0, paj (s; sevb) = 1 if s

�
1� 1�s2

2s2

�
� cj > 0. Rearranging we get
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paj (s; sevb) = 0 if s < 1
3

�q
c2j + 3 + cj

�
, paj (s; sevb) = 1 if s � 1

3

�q
c2j + 3 + cj

�
.
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