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Abstract

We compare three common dispute resolution processes – negotiation, mediation, and arbitration – in
the framework of Crawford and Sobel [V. Crawford, J. Sobel, Strategic information transmission, Econo-
metrica 50 (6) (1982) 1431–1451]. Under negotiation, the two parties engage in (possibly arbitrarily long)
face-to-face cheap talk. Under mediation, the parties communicate with a neutral third party who makes
a non-binding recommendation. Under arbitration, the two parties commit to conform to the third party
recommendation. We characterize and compare the optimal mediation and arbitration procedures. Both me-
diators and arbitrators should optimally filter information, but mediators should also add noise to it. We find
that unmediated negotiation performs as well as mediation if and only if the degree of conflict between the
parties is low.
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1. Introduction

The purpose of this paper is to characterize the optimal structure of alternative dispute resolu-
tion procedures and compare their performance within the classic model introduced by Crawford
and Sobel [7]. In this model, a player with private information about a state of the world, drawn
uniformly from the unit interval, sends a message to an uninformed player who then takes an
action in the real line. Players have quadratic preferences, with the difference in their bliss points
parameterized by a bias parameter b. The Crawford and Sobel model highlights the difficulties
of sustaining informative communication between asymmetrically informed parties. It has been
a foundation for theoretical and applied work on communication in a variety of fields, including
political economy (Grossman and Helpman [13]), finance (Morgan and Stocken [21]), organiza-
tional design (Dessein [9]).

Within this set-up, we consider the three most common means by which parties resolve dis-
putes outside of courts.1 Under arbitration, a neutral third-party renders a decision after hearing
proofs and arguments from each party. While both the agreement to arbitrate and the presentation
of these arguments is voluntary, the arbitrator’s decision is binding, in the sense that courts will
enforce it against a reluctant party. In contrast, under mediation, the neutral third-party has no au-
thority to impose a settlement. Instead, he merely suggests an agreement that must be acceptable
to the decision-maker. Finally, in unfacilitated negotiation, or cheap talk, the two parties directly
and voluntarily exchange information back and forth, until the decision-maker makes his final
decision. In Crawford and Sobel’s original paper, communication is one-shot: the sender sends a
message to the receiver once and for all. However, it is known that this assumption is not without
loss of generality (see Krishna and Morgan [16]). Accordingly, when considering negotiation, we
allow both parties to engage in an arbitrarily large but finite number of rounds of communication.

For sake of comparison, we assume that these procedures are designed to maximize the
ex-ante welfare of the party without private information, the decision-maker. In the case of nego-
tiation and mediation, it is known that this turns out to also maximize the ex-ante welfare of the
other party, the informed party.2 As should be clear, arbitration cannot do worse than mediation
(because commitment can only help) which in turn weakly improves upon negotiation (as the
revelation principle applies). Our purpose is therefore to understand when one procedure strictly
outperforms another one, and characterize the optimal procedures.

We derive three main results:

– Arbitration: Among all possibly stochastic arbitration rules, the optimal one is deterministic.
Therefore, it coincides with the arbitration rule identified in Melumad and Shibano [18].

– Mediation: We determine the welfare achieved by optimal mediation rules. This allows us to
show that the mechanism introduced by Blume, Board and Kawamura [5] is optimal. Other
optimal mediation rules exist. In all optimal mediation rules, the mediator introduces noise
in the communication between the informed party and the decision-maker.

1 Unlike Krishna and Morgan [17], we assume that the parties cannot sign contracts establishing transfers between
each other.

2 We are interested in designing mediation and arbitration rules that are optimal behind a veil of ignorance, i.e. before
the informed party is assigned her type. Another possible optimality criterion is an interim optimality criterion, whereby
the informed party chooses the optimal rule after she is informed of the state of the world. Evidently, this is a more
involved problem, as the choice of the rule may signal information about the informed party type.
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– Negotiation: Bounded negotiation rules do as well as mediation if and only if the intensity
of conflict is sufficiently low or sufficiently high, i.e. if and only if b /∈ (1/8,1/2). When
the conflict is low, i.e. b < 1/8, the two-stage cheap talk equilibrium described by Krishna
and Morgan [16] does as well as an optimal mediation rule. If the conflict is high, b > 1/2,
mediation cannot improve upon the babbling equilibrium.

Despite the tractability of the model, open questions remain. First, we do not provide a de-
scription of the entire set of optimal mediation rules, but rather, a method to verify whether any
given rule is optimal. Second, we are unable to characterize the performance of optimal negotia-
tion mechanisms for biases in the interval (1/8,1/2).

The importance of providing an economic analysis of arbitration has long been stressed (see
Crawford [8], for instance). Within the framework of Crawford and Sobel, it has been stud-
ied in the literature on delegation (Holmström [14]; Melumad and Shibano [18]; Dessein [9];
Alonso and Matouschek [1,2]). However, all these earlier contributions have restricted attention
to deterministic mechanisms. We allow for stochastic arbitration mechanisms, and prove that the
optimal protocol is deterministic. Therefore, it is the one identified in the earlier papers. This
finding is not obvious, as noise potentially relaxes the incentive constraints faced by the sender.
(Indeed, the optimal mediation mechanism is stochastic.) In coincident work, and following a
different approach, Kováč and Mylovanov [15] generalize this last result to more general envi-
ronments.

Mediation has also been studied before. Ganguly and Ray [11] provide a class of me-
diation rules that improve upon Crawford and Sobel’s equilibrium, and a numerical tool to
compute such rules in discrete environments has been developed by Myerson (crawfsob.xls,
http://home.uchicago.edu/~rmyerson/research/index.html). Our paper is the first to solve for the
optimum within the framework of Crawford and Sobel’s model.

When the bias is not too large (b < 1/2) we prove that in any optimal mediation protocol, the
mediator must choose his recommendation randomly for some reports. As mentioned, the mech-
anism of Blume, Board and Kawamura [5] is shown to be optimal. The informed party reports
the state of the world truthfully to the mediator. The mediator coarsens this information, and adds
noise. More precisely, he randomizes between two recommendations. The low recommendation
is the same for all reports, while the high recommendation is constant over intervals of reports;
it is equal to the low recommendation on the lowest interval, and it is increasing as we move to
higher intervals.

The intuition for why a mediator must randomize over recommendations is simple. A me-
diator that would be a mere relay or censor of information would be of no value here, as such
transmission or censoring of information could be directly performed by the informed party.3 In
particular, a mediator could not improve upon the (most informative) equilibrium outcome by
Crawford and Sobel. In our environment, the mediator can only create value by controlling the
flow of information between the parties. This role of mediation has already been pointed out in
other contexts by Brown and Ayres [6], Ayres and Nalebuff [4] and Mitusch and Strausz [20].

Negotiation, finally, has been examined before by Krishna and Morgan [16], within the con-
text of Crawford and Sobel’s model. They provide two interesting classes of equilibria involving
information revelation over two periods, but do not prove whether these equilibria are optimal.

3 Censoring by the mediator may be valuable in situations in which both parties have private information, as the
censoring may require knowledge of both reports, and could not be performed by either party on its own.
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We characterize optimal negotiation for small biases (b < 1/8) by showing that one of these
equilibria achieves the optimum from the mediation problem. We further show that finite com-
munication cannot replicate mediation for larger biases (i.e. b ∈ (1/8,1/2)). The proof of this
result is more involved, and we defer discussion of it until Section 5.

There are several related papers that consider the problem of implementing mediated out-
comes of finite Bayesian games as correlated equilibria of arbitrarily long negotiation protocols.
An early reference is Forges [10]. See also Gerardi [12]. Vida [23,24] provides significant recent
progress. These papers show how to dispense with mediation by using sunspots, but their results
do not apply directly to our framework.

The paper is organized as follows. Section 2 introduces the set-up and formally defines op-
timal arbitration, mediation and negotiation. Section 3 studies arbitration. Section 4 analyzes
mediation, and Section 5 examines negotiation. Concluding comments are in Section 6. All for-
mal proofs are in Appendices A–C.

2. Model

There are two players, the informed party and the decision-maker. The payoffs of both players
depend on the state of nature θ ∈ Θ = [0,1] and the action y ∈ Y = �. The informed party
knows θ ; the decision-maker does not know θ , and his prior is uniform on Θ . The decision-
maker has the capacity to execute an action in Y .

We assume that the utility function of the decision-maker equals v(y, θ) = −(y − θ)2, and
that of the informed party equals u(y, θ) = −(y − (θ + b))2 where b > 0. For any given θ , the
informed party’s preferred action is y = θ + b, while the decision-maker’s preferred action is
y = θ . The utility of each party in state θ decreases in the distance from the preferred action
given θ to the action that is actually taken.

In this setting, we will study three different classes of communication procedures: arbitration,
mediation and negotiation. Let us consider them in turn.

Arbitration requires that the players can find a neutral trustworthy third party (the arbitrator),
to whom the players can send private or public messages. After having heard the messages, the
arbitrator announces an action in Y . This announcement serves as a binding recommendation to
the decision-maker: that is, the decision-maker cannot execute any action that is different from
the recommended one.

To specify an arbitration rule as informally described above, one has to choose two message
spaces, one for the informed party and one for the decision-maker. One also has to specify the
protocol for the communication with the arbitrator (the sequence in which the parties can talk,
and whether their messages are public or private) and a function (possibly a random one) that
maps sequences of messages sent by the players to actions recommended by the arbitrator. From
the above description, one can see that the set of arbitration rules is very large. Fortunately, the
revelation principle (Myerson [22]) applies here. It says that without loss of generality, we can
restrict attention to arbitration rules whereby only the informed party communicates with the
arbitrator, sending a single message, which is a report on the state of nature. As a consequence,
we can define an arbitration rule as a function that maps reported states of nature to lotteries on
actions. The game proceeds as follows: first, the informed party privately reports a state of nature
to the arbitrator; then the arbitrator selects which action to recommend according to the lottery
that corresponds to the informed party’s report and publicly announces the recommendation;
finally, the decision-maker executes the action recommended by the arbitrator. Furthermore, the
revelation principle implies that without loss of generality we can require that in equilibrium the
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informed party should find it optimal to report the true state. The arbitration rules that have a
truthful equilibrium will be called incentive compatible.

With mediation, the parties communicate with a neutral trustworthy third party (the mediator)
who then makes a recommendation of what action to take. The difference with arbitration is that
the mediator’s recommendation is not binding – that is, the decision-maker is free to choose an
action that is different from the recommended one. The revelation principle applies to mediation
as well, so without loss of generality we can restrict attention to mediation rules whereby the
informed party sends a single private message to the mediator, which is a report on the state of
nature. So, similarly to an arbitration rule, a mediation rule can be defined as a function that
maps reported states of nature into lotteries on actions. Given a mediation rule, the game pro-
ceeds as follows: first, the informed party privately reports a state of nature to the mediator; then
the mediator selects which action to recommend according to the lottery that corresponds to the
informed party’s report and publicly announces the recommendation; finally, the decision-maker
chooses what action to execute. The revelation principle also implies that without loss of general-
ity, reporting the true state should be optimal for the informed party, and obeying the mediator’s
recommendation should be optimal for the decision-maker (the last requirement is absent in the
case of arbitration, because there the decision-maker cannot disobey the recommendation by
definition). The mediation rules that have an equilibrium where the informed party always re-
ports the truth and the decision-maker always obeys the recommendation will be called incentive
compatible.

Finally, negotiation means that the informed party and the decision-maker engage in several
rounds of unmediated communication, sending a message to the other party at each round. To
describe a negotiation protocol formally, one needs to specify two message sets, one for each
party, and a number T , which is the length of the protocol. Communication proceeds as follows:
at stages 1, . . . , T , the informed party and the decision-maker simultaneously choose a message,
and their choices become commonly known at the end of the stage. At stage T + 1, the decision-
maker selects an action.

From these descriptions, one can see that any outcome that can be achieved with mediation
can be replicated with arbitration. Indeed, any mediation rule that induces truthful reporting from
the informed party will also induce truthful reporting if applied to the arbitration game. Also, the
revelation principle implies that any equilibrium of the game induced by any negotiation protocol
is outcome equivalent to a truthful equilibrium of some incentive compatible mediation rule. So
any outcome that can be achieved with negotiation can be replicated with mediation.

The aim of the paper is to find the communication procedure in each of the three classes
that is optimal for the decision-maker. In this connection, the following fact is worth noting.
Consider any equilibrium of any incentive compatible mediation rule, and let V be the ex-ante
expected utility of the decision-maker, and U(θ) be the expected utility of the informed party in
state θ in that equilibrium. Crawford and Sobel [7] prove that the incentive compatibility for the
decision-maker implies

V = EθU(θ) + b2. (1)

The reason why this equality is true is that the decision-maker has a quadratic loss function,
so the optimal action for him is equal to the expected value of the state conditional on his in-
formation (i.e. on the fact that this action is recommended to him by the mediator). Hence the
equilibrium loss of the decision-maker is equal to the residual variance of the state after hear-
ing the recommendation, and the equilibrium loss of the informed party is equal to the residual
variance of the state plus the square of the bias.
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As a consequence, an incentive compatible mediation rule p ex-ante Pareto dominates an in-
centive compatible rule q if and only if the decision-maker’s ex-ante expected utility under p

is higher than under q . This fact will allow us to maximize the expected utility of the decision-
maker, with the understanding that the resulting mediation rule will be Pareto optimal. Since any
equilibrium of any negotiation protocol is outcome equivalent to a truthful equilibrium of some
incentive compatible mediation rule, the same statement holds also for the optimal negotiation
protocol. One should note that this property does not hold for arbitration, because the recom-
mended action need not be equal to the expected value of the state conditional on the fact that
the action is recommended.

3. Arbitration

Let us formally introduce the optimization problem that is solved in case of arbitration. As
mentioned in the previous section, the revelation principle allows us to restrict attention to ar-
bitration rules whereby the informed party sends a single message to the arbitrator, which is a
report on the state of nature. Further, in equilibrium the informed party should find it optimal to
announce the true state. Hence we can define an arbitration rule to be a family (p(·|θ))θ∈Θ , where
for each θ ∈ Θ , p(·|θ) is a probability distribution on Y . The interpretation is that upon hear-
ing the report of θ from the informed party, the arbitrator selects his recommendation according
to p(·|θ).

Definition 1. An optimal arbitration rule p = (p(·|θ))θ∈Θ is family of probability distributions
on Y that solves the following problem:

max
(p(·|θ))θ∈Θ

V = −
∫

Y×Θ

(y − θ)2 dp(y|θ) dθ

subject to

θ = arg max
θ̂∈Θ

[
−

∫
Y

(
y − (θ + b)

)2
dp(y|θ̂ )

]
, ∀θ ∈ Θ. (IC-IP)

The constraint (IC-IP) (IP stands for “informed party”) reflects the fact that the informed party
should find it optimal to tell the truth. An arbitration rule that satisfies (IC-IP) is called incentive
compatible.

To solve for the optimal arbitration rule, we first develop a tractable way to deal with
the incentive compatibility constraint for the informed party. Let y(θ̂) = ∫

Y
y dp(y|θ̂ ) and

σ 2(θ̂) = ∫
Y
(y − y(θ̂))2 dp(y|θ̂ ) be the conditional expectation and the variance of y given a

message θ̂ . Then an expected payoff of the informed party of type θ who reported a message θ̂

in the mechanism p is∫
Y

−(
y − (θ + b)

)2
dp(y|θ̂ ) = −σ 2(θ̂) − (

y(θ̂) − (θ + b)
)2

.

Namely, the fact that the informed party has a quadratic loss function implies that the informed
party cares only about the expectation and the variance of the action.

One apparent benefit of this representation is that the constraint (IC-IP) can be stated in terms
of (y(θ), σ 2(θ)) only. In addition, notice that the variance of y enters the utility function of
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the informed party in a quasi-linear way, and thus it does not interact with the type θ . Taking
advantage of this fact, we can show (Lemma 1 below) that the incentive compatibility for the
informed party is equivalent to two conditions: the expected action is non-decreasing in the state,
and the informed party’s equilibrium payoff in any state θ can be expressed as a function of his
payoff in state 0 and of the expected action in the states below θ . This result is analogous to a
well-known result in mechanism design for environments where the preferences are quasi-linear
in money.

Lemma 1. {y(θ), σ 2(θ)}θ∈Θ satisfy (IC-IP) if and only if

(i) y(θ) is non-decreasing;
(ii) −σ 2(θ) = U(θ) + (y(θ) − (θ + b))2, and U(θ) = U(0) + ∫ θ

0 2(y(θ̃) − (θ̃ + b)) dθ̃ .

This representation allows us to prove the following theorem.

Theorem 1. The optimal arbitration rule selects the preferred action of the informed party in the
set [0,max{1 − b, 1

2 }]. Formally, it satisfies:

y(θ) =
{

θ + b, if θ ∈ [0,max{1 − 2b,0}),
max{1 − b, 1

2 }, if θ ∈ [max{1 − 2b,0},1],
σ 2(θ) = 0, ∀θ ∈ [0,1],

U(0) =
{

0, if b � 1
2 ,

−( 1
2 − b)2, if b > 1

2 .

Observe that when the preference divergence parameter b is above 1
2 , the optimal arbitration

rule is a flat one (the same decision is enforced no matter what the informed party reports). For
future reference notice that for these values of the parameter communication is useless in the
arbitration model, and, consequently, it is useless in the mediation and negotiation models.

When b � 1
2 , the optimal arbitration rule is deterministic. It implements the most preferred

action of the informed party for low states of the world, and is constant at 1 − b for high states
of the world. See Fig. 1 for an illustration.

Melumad and Shibano [18] already established the optimality of such a rule among determin-
istic mechanisms. The optimal mechanism can be viewed as a delegation of the decision to the
informed party with a limited form of discretion: the informed party can enforce any decision
he likes, as long as it does not exceed 1 − b. Since the informed party’s most preferred action in
any state of the world is higher than that of the decision maker, it pays to impose an upper bound
on the allowable actions. On the other hand, it turns out that the best way to make use of the
informed party’s information in case of the low states is to grant a complete freedom of choice
of the action to the informed party.4

Our result demonstrates that this delegation rule remains optimal even if we allow for stochas-
tic mechanisms. The tradeoff here is between an implementation of expected action functions
which are more desirable for the decision maker and incentive costs due to an increased variance
of the mechanism. It turns out that this tradeoff is always resolved in favor of using mechanisms
with the smallest possible variance, i.e. deterministic mechanisms.

4 For additional intuition and results on optimal delegation see also Holmström [14], Alonso and Matouschek [1,2].
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Fig. 1. Optimal arbitration.

To gain the intuition for why the optimal arbitration rule is deterministic, consider, for exam-
ple, reducing y(θ) by a small δ > 0 on an interval [0, θ] ⊆ [0,1 − 2b]. The distance between the
expected action and the decision-maker’s most preferred action is thus reduced from b to b − δ

on this interval. The expected gain for the decision-maker is

θ∫
0

(−(b − δ)2)dθ −
θ∫

0

(−b2)dθ = (2b − δ)δθ.

In order to implement this new expected action function in an incentive compatible way we need
to adjust a conditional variance function. First, we need to adjust σ 2(·) on the interval [0, θ ].
Part (ii) of Lemma 1 implies

d

dθ
σ 2(θ) = −2

(
y(θ) − (θ + b)

) d

dθ
y(θ)

∣∣∣∣
y(θ)=θ+b−δ

= 2δ.

Intuitively, since we are implementing expected actions which are below the most preferred
actions of the informed party, we need to discourage him from choosing higher actions by in-
creasing their variance. The variance for the types on the interval [0, θ] is thus σ 2(θ) = 2δθ .

Second, the variance for the types immediately above θ cannot be lower than the variance
σ 2(θ) = 2δθ , since otherwise the type θ could slightly overstate his type and receive his most
preferred expected action, θ +b, at a smaller variance. The incentive compatibility of the original
mechanism implies that the variance for all the types above θ is at least as large as the variance
of the type θ .

The expected loss for the decision-maker from the variance is thus at least

θ∫
2δθ dθ +

1∫
2δθ dθ = (2 − θ)δθ.
0 θ
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Hence the net benefit for the decision-maker is at most(
(2b − δ) − (2 − θ)

)
δθ < 0,

where the inequality follows from δ > 0, θ < 1 and b � 1
2 .

For completeness let us also comment on a symmetric arbitration problem which maximizes
the ex-ante payoff of the informed party assuming that the informed party can commit to any
announcement strategy as a function of the state while the decision-maker cannot commit. Eq. (1)
implies that the upper bound on the ex-ante payoff of the informed part is −b2. This upper
bound can be achieved by truthful announcement of the state by the informed party to which the
decision-maker best-responds with the action equal to the state.

4. Mediation

In this section, we look for the optimal mediation rule. We first note that the optimal arbitra-
tion rule (always recommending the action y = 1

2 ) is feasible when b > 1
2 . Since the mediation

problem is more constrained than the arbitration problem, this rule also has to be the optimal
mediation rule. So we focus on finding a solution for b ∈ (0, 1

2 ].
By the revelation principle, one can restrict attention to mediation protocols whereby the

informed party reports the state of the world to the mediator, and the mediator makes a rec-
ommendation to the decision-maker. Further, we can assume without loss of generality that
the report is truthful, and the recommended action is incentive compatible (see Myerson [22]).
Formally, a mediation rule is a family of probability distributions on Y , (p(·|θ)θ∈Θ), with the
interpretation that the mediator selects his recommendation according to p(y|θ) after hearing
the report θ from the informed party.

Definition 2. An optimal mediation rule p = (p(·|θ)θ∈Θ) is a family of probability distributions
on Y that solves the following problem:

max
(p(·|θ)θ∈Θ)

V = −
∫

Y×Θ

(y − θ)2 dp(y|θ) dθ

subject to

θ = arg max
θ̂∈Θ

[
−

∫
Y

(
y − (θ + b)

)2
dp(y|θ̂ )

]
, ∀θ ∈ Θ; (IC-IP)

y = Eθ [θ |y], ∀y ∈ Y. (IC-DM)

A mediation rule that satisfies (IC-IP) and (IC-DM) is called incentive compatible.
The constraint (IC-DM) states that the decision-maker never has an incentive to deviate from

an action that is prescribed to him by the mediator (the right-hand side of the equality is the ex-
pectation of θ given recommendation y, which is the action that maximizes the decision-maker’s
payoff when the mediator recommends y). Given p(y|θ) and the unconditional distribution of θ ,
Eθ [θ |y] is determined uniquely up to a zero-measure subset of Y .

We will proceed as follows. First, we will derive an upper bound on the objective function.
Next, we show that some of the mechanisms already proposed in the literature achieve this upper
bound for certain values of b.
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Lemma 2.

(a) If a mediation rule p is incentive compatible, then V � − 1
3b(1 − b);

(b) An incentive compatible mediation rule is optimal if and only if the lowest sender’s type gets
its preferred decision, i.e. U(0) = 0.

Lemma 2 can be compared to the revenue equivalence theorem in standard mechanism design.
However, while in the revenue equivalence theorem, the revenue is pinned down by the utility
of the lowest type and the allocation, here the welfare from an incentive compatible mechanism
is determined only by the utility of the lowest type. The reason for this difference is that in our
problem, the mechanism designer is facing two sets of incentive compatibility constraints, one
for the informed party and one for the decision-maker. The incentive compatibility constraints
for the decision-maker allow us to express y(θ), which plays the role of an “allocation”, as a
function of U(0), the lowest type’s utility.

Lemma 2 immediately implies that some of the procedures that have been proposed in the lit-
erature as improvements upon one-shot negotiation are, in fact, optimal. One of them is described
below.

Theorem 2. For every b < 1
2 , an optimal mediation rule is such that the mediator randomizes

between two actions in each state. With some probability μ, he recommends action b, and with
probability 1 − μ he recommends action ai when θ ∈ [θi, θi+1), i = 0, . . . ,N − 1, where

θ0 = 0;
θi = 2bi2 − (

2bN2 − 1
) 2i − 1

2N − 1
, i = 1, . . . ,N;

ai = b(i + 1) − 2bi(N − i) + (2 − b)i

2N − 1
, i = 0, . . . ,N − 1;

μ = 1 − 1 − 2b

4(1 − b)

(
1

N − 1
− 1

N
− 2 − b

bN − 1
+ 2 − b

bN − b + 1

)
and N is such that

1

2N2
� b <

1

2(N − 1)2
.

It is straightforward to verify that this mediation rule is incentive compatible. The fact that
it is optimal follows from the fact that it results in U(0) = 0 (since type 0 gets action b with
probability one) and Lemma 2. See Fig. 2 for an illustration.

It is immediate to verify that, as the bias tends to zero, so does the probability μ. However,
μ is not monotonic in the bias. Rather, for each value of N , it is concave and equal to zero for
the two extreme values of bias that are consistent with N . For these extreme (and non-generic)
values, the mediation rule replicates the most informative equilibrium of Crawford and Sobel.

The above rule appears in Blume, Board and Kawamura [5], who propose it as an improve-
ment upon the most informative Crawford and Sobel equilibrium, but do not prove that it is
optimal, or interpret it as a mediation procedure. They propose the following simple inter-
pretation. Imagine that the informed party sends one message from the interval [0,1] to the
decision-maker, but the decision-maker gets his message only with probability 1−μ: with proba-
bility μ, the message that the decision-maker gets is a random draw from the uniform distribution
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Fig. 2. Optimal mediation.

on [0,1]. It is straightforward to show that this game has an equilibrium that is outcome equiva-
lent to the truthful equilibrium of the mediation rule described above.

Theorem 2 highlights the fact that the primary role of the mediator is to filter the information
provided by the informed party. In fact, the optimal mediator’s only function is to introduce
noise into communication. As Blume, Board and Kawamura [5] note, introducing noise can have
opposing effects on the amount of information transmitted. On the one hand, the direct effect of
noise is to make the message received by the decision-maker less informative. On the other hand,
the presence of noise relaxes the incentive compatibility for the informed party by weakening the
link between his message and the decision-maker’s reaction, which makes it easier to motivate the
informed party to transmit more information. Theorem 2 shows that the second effect dominates
the first one; moreover, simply introducing an optimal amount of noise into communication is
optimal in the class of all mediation rules.

The optimal mediation rule described above is not unique. In particular, Lemma 2 implies that
another mediation rule that has been proposed in the literature is also optimal when b � 1

8 . This
is the mediation rule of Krishna and Morgan [16], which can be implemented with two rounds
of cheap talk and is discussed in more detail in the next section.

Observe also that in the optimal mediation problem the constraints are convex in p, and the
objective function is linear. Therefore, the set of optimal mediation rules is convex, so that there
is in general a continuum of optimal mediation rules.

5. Negotiation

In our setting, negotiation means that the informed party and the decision-maker engage in
several rounds of unmediated communication, sending a message to the other party at each round.
Similarly to Aumann and Hart [3], a negotiation protocol will include two sets, I and D, and
T ∈ N ∪ {∞}, where I and D are the sets of admissible messages of the informed party and the
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decision-maker, respectively, and T is the length of the protocol. The protocol will define a game
with incomplete information with T +2 stages that proceeds as follows. At stage 0, nature selects
the state θ and informs the informed party. At each of the stages 1, . . . , T , the informed party
and the decision-maker simultaneously choose a message, and their choices become commonly
known at the end of the stage. At stage T + 1, the decision-maker selects an action. The payoffs
for the decision-maker and the informed party are v(y, θ) and u(y, θ) respectively, where y is
the action, and θ is the true state of nature. A negotiation protocol will be called finite if T < ∞.

Definition 3. An optimal negotiation protocol (I,D,T ) is a solution to the following problem:

max
p(·),I,D,T

V = −
∫

Y×Θ

(y − θ)2p (dy, dθ)

subject to

p is the outcome distribution of a Bayesian–Nash equilibrium

of the game induced by the protocol (I,D,T ).

The central result of this section is the following one.

Theorem 3. Finite negotiation achieves the optimal mediated outcome if and only if b � 1/8.

The “if” part of the theorem is easy to show on the basis of our Lemma 2. The optimal
‘monotonic’ equilibrium of Krishna and Morgan [16] in a two-period negotiation protocol exists
if and only if b � 1/8, and achieves value U(0) = 0: the type-0 informed party achieves the
optimal utility. In light of Lemma 2, for an incentive compatible mediation scheme to be optimal,
it is necessary and sufficient that U(0) = 0. Hence the optimal monotonic two-period negotiation
equilibrium by Krishna and Morgan performs as well as the optimal mediation scheme.

For purposes of illustration, we sketch the construction of the optimal ‘monotonic’ equi-
librium developed by Krishna and Morgan [16]. The reader is referred to that paper for the
details in the construction. In the first period of the negotiation protocol, the informed party
signals whether the state is above or below some threshold θ∗. Simultaneously, the informed
party and the decision-maker exchange messages in a meeting, so as to emulate a public ran-
domization device with probabilities p and 1 − p.5 In the second round of communication, if
the informed party’s message indicates that the state is below θ∗, a partitional equilibrium is
played, as in Crawford and Sobel [7]. Given the number of elements in the partition N such that
1/[2(N +1)2] � b < 1/[2(N)2], and the set of thresholds {θi : i = 0, . . . ,N −1}, with θi = 2bi2,
θN−1 = θ∗, the informed party reports in which interval [θi, θi+1] the state lies, and the decision-
maker takes the corresponding action ai = [θi + θi+1]/2. These thresholds assure that θ0 = 0,
θ1 = 2b and hence a0 = b so that, optimally, U(0) = 0.

If the informed party’s message reported that the state is above θ∗ = θN−1 in the first round
of communication, the continuation play depends on the outcome of the simultaneous exchange
of messages. With some probability p, no further communication occurs and the decision-maker
takes his action accordingly: a∗

N−1 = [1 + θN−1]/2. With probability 1 − p, the informed party

5 Such meetings in which parties simultaneously exchange messages is called a jointly controlled lottery. The reader is
referred to Aumann and Hart [3] and Krishna and Morgan [16] for a formal definition.
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Fig. 3. Indifference curves for θ, θ ′ (θ ′ > θ > 0).

further signals whether the state is in some lower interval [θN−1, θN ], or upper interval [θN ,1],
upon which the decision-maker takes his action: aN−1 = [θN−1 + θN ]/2 and aN = [1 + θN ]/2
respectively.

Krishna and Morgan prove that such equilibria exist for b � 1/8 with the values θN and p that
satisfy the following two indifference conditions. The type-θN sender is indifferent between the
outcome aN−1 and aN , and the type-θN−1 sender is indifferent between the outcome aN−2 and
the lottery determining the outcome aN−1 with probability (1 − p) and the outcome a∗

N−1 with
probability p.

The “only if” part is considerably more involved, and its proof is relegated to Appendix C. To
gain some intuition for this part, recall from Lemma 2 that for an incentive compatible mediation
scheme to be optimal, it is necessary and sufficient that the lowest informed party’s type be
mapped into the action b (with probability 1). Since preferences are quadratic, any lottery y over
actions can be summarized by its first two moments. We may thus represent the preferences of the
different informed party’s types by their indifference curves in the plane defined by the lotteries’
expectation and variance. Fig. 3 shows the indifference curves going through the lottery that
is degenerate on the action b for two different types θ ′ > θ > 0. The indifference curve for θ ′
is lower than for θ because v12 > 0. Observe that if the informed party’s type θ is indifferent
between the (degenerate) lottery b and some non-degenerate lottery, then type θ ′ strictly prefers
this non-degenerate lottery to b. To put it differently, if in some equilibrium the informed party’s
type θ ′ is mapped into the action b, then so must be all lower types. Furthermore, in equilibrium,
there can be at most one type indifferent between the action b and some non-degenerate lottery.

Suppose that, in an equilibrium of some negotiation protocol, action b is chosen when the
state is 0, so that the optimal mediated outcome is achieved. Then we prove that it must be the
case that, for some θ∗, the action b is finally chosen for almost all states in [0, θ∗]. Furthermore,
we prove that action b cannot be finally adopted with positive probability when the state is
larger than θ∗. For this to conform with the decision-maker’s equilibrium beliefs, it must be that
θ∗ = 2b.

Consider now the choice of the informed party when the state is θ∗ − ε for ε > 0 small
enough. By following the equilibrium strategy, the informed party gets action b with probability
one. But this type of informed party may be better off by upsetting the equilibrium, deviating
and mimicking a type higher than 2b. If the sender follows such a strategy, then by the final
stage of communication the receiver will believe with probability one that the state is higher
than 2b (because all types in the interval [0,2b], and only them, get the same action b). So such
a strategy by the sender will ensure that the action is at least 2b. Also, the sender can choose
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a strategy that will lead to actions no larger than (θ∗ + 1)/2 – the expected value over types
in (θ∗,1). Therefore, in equilibrium type θ∗ must prefer action b for sure to some lottery with
the support contained in [2b, (θ∗ + 1)/2]. Because his preferences are single-peaked at 2b, this
means that he must prefer action b for sure to action (θ∗ + 1)/2 for sure:(

b − (θ∗ − ε) − b
)2 �

(
θ∗ + 1

2
− (θ∗ − ε) − b

)2

, ∀ε > 0 or b � 1/8,

because θ∗ = 2b.
More succinctly, the ‘only if’ part of the above theorem follows because quadratic preferences

imply that such an equilibrium be monotonic, in the sense that the set of states for which the
action b should finally be chosen constitute an initial interval (i.e., an interval containing 0). If
the bias is large, this imposes a significant cost on the informed party when the state is close
enough to the upper end of this interval, the informed party may be better off pretending that
the state of the world is larger. This intuition suggests that the result should extend to the case
of communication of unbounded length. But we have no proof for this, and cannot rule out that
some almost surely finite negotiation protocol achieves the mediation outcome.

6. Discussion and conclusion

We have compared the performance of three common dispute resolution processes – arbitra-
tion, mediation and negotiation – in the framework of Crawford and Sobel [7]. Under arbitration,
the two parties commit to conform to the decision of a neutral third party. Under mediation
instead, compliance with the third party’s suggested settlement is voluntary. Finally, under un-
facilitated negotiation, the two parties engage in (possibly arbitrarily long) face-to-face cheap
talk. We have characterized and compared the optimal arbitration and mediation schemes, and
identified necessary and sufficient conditions for negotiation to perform as well as mediation.
The optimal mediation scheme corresponds to the communication protocol developed by Blume,
Board and Kawamura [5]. Thus, we find that mediators may act optimally by filtering the un-
mediated communication and introducing noise to it. We have found that mediation performs
better than negotiation when the conflict of interest is intermediate, whereas a mediator is unnec-
essary and two rounds of communication suffice when the conflict of interest is low.

In terms of welfare, our findings can be summarized by Fig. 4, which represents the cost (i.e.,
the opposite of the sender’s ex-ante payoff) of arbitration (dashed line), optimal mediation (solid
line), and the upper bound on the cost of cheap talk for the range of biases [0,1/

√
8]. (Up to

b = 1/8, this bound is given by Krishna and Morgan’s two-period equilibrium described earlier,
which was shown to be optimal in this range; in the range [1/8,1/

√
8], this bound is given by the

other ‘non-monotonic’ equilibrium that can be found in Krishna and Morgan, and has not been
discussed so far. This equilibrium might or might not be optimal. Finally, no non-babbling cheap
talk equilibrium is known for biases above 1/

√
8.)

Most of our results have been derived within the standard uniform quadratic framework. As
mentioned, in concomitant work, Kováč and Mylovanov [15] have shown that the results for
arbitration remain valid more generally. We are able to extend some of our results on media-
tion somewhat, to the class of distributions with linear hazard rate, and have proved an analog
of Lemma 2, as well as shown that an optimal mediation mechanism of the form presented in
Theorem 2 exists (details available upon request). While we have not shown that the results in
the case of negotiation extend to those distributions, this does not appear implausible. Indeed,
for small biases, the characterization of the two-stage equilibrium of Krishna and Morgan [16]
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Fig. 4. Cost (the negative of the sender’s payoff) achieved by optimal arbitration (dashed line), optimal mediation (solid
line), and upper bound on the cost of cheap talk (bold solid line) for b ∈ [1/8,1/

√
8].

reduces to the solution of a system of non-linear equations with one more unknown than equa-
tions. Therefore, we expect that, within some range of parameters, this unknown can be chosen
to set the lowest type’s utility to zero.
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Appendix A. Arbitration

A.1. Proof of Lemma 1

Proof. (Only If)
(i) From incentive compatibility for every θ, θ ′ ∈ Θ we have

−σ 2(θ) − (
y(θ) − (θ + b)

)2 � −σ 2(θ ′) − (
y(θ ′) − (θ + b)

)2;
−σ 2(θ ′) − (

y(θ ′) − (θ ′ + b)
)2 � −σ 2(θ) − (

y(θ) − (θ ′ + b)
)2

.

Adding up and rearranging we get

(θ − θ ′)
(
y(θ) − y(θ ′)

)
� 0.
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(ii) Note that we can express

−σ 2(θ) = U(θ) + (
y(θ) − (θ + b)

)2
.

By the generalized Envelope Theorem (Corollary 1 in Milgrom and Segal [19]) we have

U(θ) = U(0) +
θ∫

0

2
(
y(θ̃) − (θ̃ + b)

)
dθ̃ .

(If)
We need to show that for every θ, θ ′ ∈ Θ ,(−σ 2(θ) − (

y(θ) − (θ + b)
)2) − (−σ 2(θ ′) − (

y(θ ′) − (θ + b)
)2) � 0.

Notice that

−σ 2(θ ′) − (
y(θ ′) − (θ + b)

)2 = −σ 2(θ ′) − (
y(θ ′) − (θ ′ + b)

)2 − 2y(θ ′)(θ ′ + b)

+ (θ ′ + b)2 + 2y(θ ′)(θ + b) − (θ + b)2

= U(θ ′) −
θ ′∫

θ

2
(
y(θ ′) − (θ̃ + b)

)
dθ̃ .

So

U(θ) − U(θ ′) +
θ ′∫

θ

2
(
y(θ ′) − (θ̃ + b)

)
dθ̃ =

θ ′∫
θ

2
(
y(θ ′) − y(θ̃)

)
dθ̃ � 0. �

A.2. Proof of Theorem 1

By Lemma 1 the optimal arbitration rule has to solve the following simplified problem:

max
y(·),σ 2(·),U(0)

V =
1∫

0

(−σ 2(θ) − (
y(θ) − θ

)2)
dθ

subject to

y(θ) is non-decreasing; (MON)

σ 2(θ) = −U(0) −
θ∫

0

2
(
y(θ̃) − (θ̃ + b)

)
dθ̃ − (

y(θ) − (θ + b)
)2; (ENV)

σ 2(θ) � 0, U(0) � 0. (NONNEG)

The proof of Theorem 1 proceeds through a series of lemmas.

Lemma 3. If (y(θ), σ 2(θ),U(0)) are feasible, then

V
(
y(θ), σ 2(θ),U(0)

) = U(0) + 2

1∫
0

y(θ)(1 − θ − b)dθ + b2 − 1

3
.
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Proof. Substitute constraint (ENV) into the objective function and change the order of integra-
tion in the double integral. �
Lemma 4. Let b ∈ [0, 1

2 ]. Mechanism (y(θ), σ 2(θ),U(0)) is optimal.

Proof. Assume there exists a mechanism (ŷ(θ), σ̂ 2(θ), Û (0)) which achieves a strictly higher
welfare than the mechanism (y(θ), σ 2(θ),U(0)).

By Lemma 3 we have

0 < V
(
ŷ(θ), σ̂ 2(θ), Û (0)

) − V
(
y(θ), σ 2(θ),U(0)

)
= Û(0) − U(0) + 2

1∫
0

(
ŷ(θ) − y(θ)

)
(1 − θ − b)dθ.

Also

0 < V
(
ŷ(θ), σ̂ 2(θ), Û (0)

) − V
(
y(θ), σ 2(θ),U(0)

)
= −

1∫
0

((
ŷ(θ) − θ

)2 + σ̂ 2(θ)
)
dθ +

1∫
0

((
y(θ) − θ

)2 + σ 2(θ)
)
dθ

� −
1∫

0

(
ŷ(θ) − θ

)2
dθ +

1∫
0

(
y(θ) − θ

)2
dθ

= 2

1∫
0

(
ŷ(θ) − y(θ)

)(
θ − y(θ)

)
dθ −

1∫
0

(
ŷ(θ) − y(θ)

)2
dθ

< 2

1∫
0

(
ŷ(θ) − y(θ)

)(
θ − y(θ)

)
dθ.

Adding up two inequalities,

0 < Û(0) − U(0) + 2

1∫
0

(
ŷ(θ) − y(θ)

)(
1 − b − y(θ)

)
dθ.

Substituting y(θ) and using (ENV) we get

0 < Û(0) − U(0) + 2

1−2b∫
0

(
ŷ(θ) − y(θ)

)(
1 − 2b − θ

)
dθ

= Û(0) +
1−2b∫

dÛ(θ)

dθ
(1 − 2b − θ) dθ − U(0) −

1−2b∫
dU(θ)

dθ
(1 − 2b − θ) dθ
0 0
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= Û (0) − Û (0)(1 − 2b) +
1−2b∫
0

Û (θ) dθ − U(0) + U(0)(1 − 2b) −
1−2b∫
0

U(θ)dθ

= 2b
(
Û (0) − U(0)

) + 2

( 1−2b∫
0

(
Û (θ) − U(θ)

)
dθ

)
.

However, this is not possible since Û (θ) � U(θ) = 0 for every θ ∈ [0,1 − 2b]. �
Lemma 5. Let b > 1

2 . If (ŷ(θ), σ̂ 2(θ), Û (0)) are optimal, then ŷ(θ) is constant on (0,1).

Proof. Suppose that ŷ(θ) is not constant on (0,1), i.e. ∃θ, θ ′ ∈ (0,1) such that θ ′ > θ , ŷ(θ ′) >

ŷ(θ).
Consider the following policy:

y1(θ) = ŷ(0) for every θ,

σ 2
1 (θ) = σ̂ 2(0),

U1(0) = Û (0).

Obviously (y1(θ), σ 2
1 (θ),U1(0)) satisfy constraint (MON) and (NONNEG). Moreover, this

policy achieves a strictly higher value of the objective function than the original policy, since, by
Lemma 3,

V
(
ŷ, σ̂ 2) = Û (0) + 2

1∫
0

ŷ(θ)(1 − θ − b)dθ + b2 − 1

3

< Û(0) + 2

1∫
0

ŷ(θ) dθ

1∫
0

(1 − θ − b)dθ + b2 − 1

3

< Û(0) + 2ŷ(0)

1∫
0

(1 − θ − b)dθ + b2 − 1

3

= V
(
y1, σ

2
1

)
.

The first inequality is due to (MON) and the fact that ŷ(θ) is not constant on (0,1); the last
inequality is due to (MON) and the fact that

∫ 1
0 (1− θ −b)dθ = 1

2 −b < 0. So the original policy
is suboptimal. �
Lemma 6. Let b > 1

2 . Mechanism (y(θ), σ 2(θ),U(0)) is optimal.

Proof. By Lemma 5, if ŷ(θ) is a part of an optimal policy, then it is constant on (0,1). Without
loss of generality, we can restrict attention to policies such that ŷ(θ) is constant on [0,1]. Take
any such policy (ŷ(θ), σ̂ 2(θ), Û (0)). Then
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V
(
y(θ), σ 2(θ),U(0)

) − V
(
ŷ(θ), σ̂ 2(θ), Û (0)

)
=

1∫
0

(−σ 2(θ) − (
y(θ) − θ

)2)
dθ −

1∫
0

(−σ̂ 2(θ) − (
ŷ(θ) − θ

)2)
dθ

� −
1∫

0

(
y(θ) − θ

)2
dθ +

1∫
0

(
ŷ(θ) − θ

)2
dθ = ŷ2(0) − ŷ(0) + 1

4
� 0,

where the first inequality follows from the fact that σ̂ 2(θ) � σ 2(θ) = 0. �
The proof of Theorem 1 follows from Lemmas 4 and 6.

Appendix B. Mediation

B.1. Proof of Lemma 2

Proof. By (IC-DM) and the fact that θ is uniform on [0,1],∫
Θ

y(θ) dθ =
∫

Y×Θ

y dp(y|θ) dθ =
∫

Y×Θ

θ dp(y|θ) dθ = 1

2
. (1)

By (IC-DM),

cov
(
θ, y(θ)

) = cov(θ, y) = cov
(
Eθ [θ |y], y) = cov(y, y) = var(y). (2)

By Lemma 3 (see Appendix A.2) and Eqs. (1) and (2),

V = U(0) + 2

1∫
0

y(θ)(1 − θ − b)dθ + b2 − 1

3

= U(0) − 2

1∫
0

y(θ)θ dθ + 1 − b + b2 − 1

3

= U(0) − 2 var(y) + 1

6
− b + b2. (3)

On the other hand,

V = −E(y − θ)2

= −E

[((
θ − 1

2

)
−

(
y − 1

2

))2]
= −var(θ) + 2 cov(y, θ) − var(y)

= var(y) − var(θ) = var(y) − 1

12
, (4)

where the second equality follows from (1), the third equality follows from (2), and the last
equality holds because θ is uniformly distributed.



1416 M. Goltsman et al. / Journal of Economic Theory 144 (2009) 1397–1420
Combining (3) and (4), we get

U(0) = 3 var(y) − 1

4
+ b − b2.

Since U(0) � 0, we have

var(y) � 1

12
− 1

3
b + 1

3
b2. (5)

Substituting (5) into (4), we get

V � −1

3

(
b − b2).

This holds with equality if and only if U(0) = 0. �
Appendix C. Negotiation

C.1. Proof of Theorem 3

First, let us prove an auxiliary result about a helpful property of quadratic preferences.

Lemma 7. Let θ1, θ2 ∈ [0,1], θ1 < θ2. Let l be a lottery on Y such that l does not put probability
one on action b, and θ1 weakly prefers l to action b. Then θ2 strictly prefers l to action b.

Proof. Recall that the utility of a lottery l with mean y and variance σ 2 for the informed party of
type θ equals U(θ) = −σ 2 − (y − (θ + b))2. Consequently, type θ weakly prefers l to action b

if and only if

σ 2 + (y − b)2 � 2θ(y − b),

which implies that y � b, no matter what θ is. So if θ2 > θ1 and the inequality above holds
weakly for θ1, then it has to hold strictly for θ2. �

We restrict attention to canonical equilibria in the sense of Aumann and Hart [3]: that is, equi-
libria in which revelations by the informed party alternate with jointly controlled lotteries. For
expositional simplicity, let us suppose that the players, instead of conducting jointly controlled
lotteries, have access to a randomization device that sends messages at the jointly controlled
lottery stages, so that at each stage, either the informed party or the device sends one public
message.

First, let us introduce some notation. Let p be an optimal mediation rule, and suppose that p

is implementable with finite cheap talk. Let Θ1 := {θ ∈ Θ: p(b|θ) = 1}. We know that Θ1 �= ∅,
because 0 ∈ Θ1. Let N be the set of all possible sequences of messages that can be observed in the
equilibrium that implements p, and let μ(·|θ) be the probability distribution over N conditional
on the state being θ . Let P(·|n) be the decision-maker’s posterior upon observing n ∈ N , that is,
for Θ ⊆ [0,1], n ∈ N ,

P(Θ|n) =
∫
Θ

μ(n|θ) dF (θ)∫
[0,1] μ(n|θ) dF (θ)

, if
∫

μ(n|θ) dF (θ) > 0.
[0,1]
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Let us also assume that

P(Θ|n) = 1 if
∫

[0,1]
μ(n|θ) dF (θ) = 0 and

[
μ(n|θ) > 0 ⇒ θ ∈ Θ

]
.

The last assumption implies that if a particular path of play can only appear in one state θ∗,
then upon observing this path of play, the DM concludes that the state is θ∗ with probability one
(this restriction on conditional probabilities seems somewhat arbitrary, but it is commonly made
in signaling models with a continuum of types when talking about separating equilibria).

Finally, let n(t) be the restriction of sequence n ∈ N to the first t stages (including stage t),
and let nt be the message sent at stage t according to sequence n. We can also define μ(n(t)|θ) :=∫
n′∈N : n′(t)=n(t)

dμ (n|θ), the probability that n(t) realizes in equilibrium given θ .

Lemma 8. Θ1 = [0,2b].

Proof. For any period t = 0, . . . , T and partial history n(t), let

A
(
n(t)

) = {
θ ∈ [0,1]: ∃n′ ∈ support μ(·|θ), n′(t) = n(t)

}
be the set of types whose equilibrium behavior is consistent with partial history n(t). Let
Θ1(n(t)) = {θ ∈ A(n(t)): for a.e. (with respect to μ(·|θ)) n′ ∈ N s.t. n′(t) = n(t),E(θ |n′) = b}
be the set of types that, following the history n(t), get action b with probability one. Let us prove
that for every t = 0, . . . , T and n(t) such that Θ1(n(t)) �= ∅,

(a) Θ1(n(t)) = [0, θ(n(t))] ∩ A(n(t)), for some θ(n(t)) � b;
(b) E(θ |n(t),Θ1(n(t))) = b.
The proof will be by induction, starting from t = T . Take any partial history n(T −1) such that

Θ1(n(T − 1)) �= ∅. Suppose, without loss of generality, that T is a revelation stage. By Lemma 1
of Crawford and Sobel [7], the equilibrium of the subgame following the history n(T − 1) is
partitional. In particular, since Θ1(n(T − 1)) �= ∅, there exists an interval [a(n), θ(n)〉 (closed or
open on the right) such that, after the history n(T − 1), all types in this interval, and only them,
choose messages that lead to action b; that is, Θ1(n) = [a(n), θ(n)〉 ∩ A(n(t)). Moreover, a(n)

can be taken to be 0. Suppose not, that is, a(n) > θ , for some θ ∈ A(n(t)). Then in the partitional
equilibrium of the subgame that we consider, type θ achieves an action lower than b, which is
strictly worse for it than action b. But it could have achieved action b if it played like type a(n)

– a contradiction. It also has to be the case that E(θ |n,Θ1(n)) = E(θ |n) = b, and, consequently,
that θ(n) � b.

Now suppose that the statement is true for all partial histories of length t +1, . . . , T , and let us
prove it for partial histories of length t . Consider any n(t) such that Θ1(n(t)) �= ∅. By definition,
Θ1(n(t)) ⊆ A(n(t)). There are two cases to consider:

(a) t is a revelation stage. We have to prove that

θ ′, θ ′′ ∈ Θ1
(
n(t)

)
, θ ∈ (θ ′, θ ′′) ∩ A

(
n(t)

) ⇒ θ ∈ Θ1
(
n(t)

)
,

and that

θ ′ ∈ Θ1
(
n(t)

)
, θ ∈

⋂
A

(
n(t)

)
, θ < θ ′ ⇒ θ ∈ Θ1

(
n(t)

)
.

Suppose θ ′, θ ′′ ∈ Θ1(n(t)) and θ ∈ A(n(t)). Then both θ ′ and θ ′′ choose continuation strate-
gies at stage t that guarantee action b with probability one. Incentive compatibility implies that
θ also has to choose a continuation strategy that guarantees b with probability one – otherwise
either θ ′ or θ ′′ has an incentive to imitate θ . This means that θ ∈ Θ1(n(t)).
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Now, suppose that θ ′ ∈ Θ1(n(t)), θ ∈ ⋂
A(n(t)) and θ < θ ′. This means that θ ′ chooses a

continuation strategy at stage t that guarantees action b with probability one. If θ chooses a
strategy that results in a different lottery over actions, then, by Lemma 7, θ ′ should strictly prefer
to imitate θ – a contradiction. This means that θ also chooses a continuation strategy at stage t

that guarantees action b with probability one, so θ ∈ Θ1(n(t)).
This proves that Θ1(n(t)) = [0, θ(n(t))] ∩ A(n(t)).
Since t is a revelation stage,

Θ1
(
n(t)

) =
( ⋃

n′∈N : n′(t)=n(t)

Θ1
(
n′(t + 1)

))∖
B,

where B ⊆ [0,1] includes at most one type. To see this, note that it follows from the
definition that Θ1(n(t)) ⊆ ⋃

n′∈N : n′(t)=n(t) Θ1(n
′(t + 1)). Now suppose that Θ1(n(t)) ⊂⋃

n′∈N : n′(t)=n(t) Θ1(n
′(t + 1)), and take any θ ∈ ⋃

n′∈N : n′(t)=n(t) Θ1(n
′(t + 1)) \ Θ1(n(t)).

By the definition of Θ(n(t)), it must be the case that type θ is randomizing at stage t be-
tween messages that will result in action b with probability one, and messages that results
in some other lottery. But with quadratic preferences, there can be at most one such type.
To see this, suppose, by way of contradiction, that there are two types, θ1 and θ2, both in⋃

n′∈N : n′(t)=n(t) Θ1(n
′(t + 1)) \ Θ1(n(t)), such that after history n(t), type θi is randomizing

between messages that will result in action b with probability one, and messages that results
in some other lottery (call it li ). Without loss of generality, suppose that θ1 < θ2. Then it must
be the case that θ1 is indifferent between action b and lottery l1, so, by Lemma 7, θ2 strictly
prefers l1 to b and, consequently, to l2. This means that imitating θ1 is a profitable deviation
for θ2 – a contradiction. This proves that B contains at most one type.

So

E
(
θ |n(t),Θ1

(
n(t)

))
=

∫
n′∈N : n′(t)=n(t)

E
[
θ |n′(t + 1),Θ1

(
n(t)

)]
dμ

(
n′(t + 1)|n(t),Θ1

(
n(t)

))
=

∫
n′∈N : n′(t)=n(t)

{
E

[
θ |n′(t + 1),Θ1

(
n′(t + 1)

)]
P

[
Θ1

(
n′(t + 1)

)|n′(t + 1),Θ1
(
n(t)

)]
+ E

[
θ |n′(t + 1),Θ1

(
n(t)

) \ Θ1
(
n′(t + 1)

)]
× P

[
Θ1

(
n(t)

) \ Θ1
(
n′(t + 1)

)|n′(t + 1),Θ1
(
n(t)

)]}
dμ

(
n′(t + 1)|n(t),Θ1

(
n(t)

))
= b,

where the last equality follows from the fact that

P
(
Θ1

(
n′(t + 1)

)|n′(t + 1),Θ1
(
n(t)

)) =
{

1, if n′(t + 1) ∈ support μ(·|Θ1(n(t)));
0, otherwise

and from the induction hypothesis. It follows immediately that θ(n(t)) � b.
(b) t is a jointly controlled lottery stage. Then it follows from the definition of Θ1(n(t)) that

Θ1
(
n(t)

) =
⋂

′ ′
Θ1

(
n′(t + 1)

) =
⋂

′ ′

[
0, θ

(
n′(t + 1)

)] ∩ A
(
n′(t + 1)

)
.

n ∈N : n (t)=n(t) n ∈N : n (t)=n(t)
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If t is a jointly controlled lottery stage, then for any n′, n′′ ∈ N such that n′(t) = n′′(t) = n(t),
A(n′(t + 1)) = A(n′′(t + 1)) = A(n(t)). So

Θ1
(
n(t)

) = A
(
n(t)

) ∩
⋂

n′∈N : n′(t)=n(t)

[
0, θ

(
n′(t + 1)

)] = A
(
n(t)

) ∩ [
0, θ

(
n(t)

)]
where θ(n(t)) = infn′∈N : n′(t)=n(t) θ(n′(t + 1)). Furthermore, the first equality above, together
with the fact that ∀n′ ∈ N : n′(t) = n(t), E(θ |A(n(t)) ∩ [0, θ(n′(t + 1))]) = b implies that
E(θ |A(n(t)) ∩ [0, θ(n(t))]) = b.

So we have proved that for every t = 0, . . . , T and n(t) such that Θ1(n(t)) �= ∅,
(a) Θ1(n(t)) = [0, θ(n(t))] ∩ A(n(t)), for some θ(n(t)) � b;
(b) E(θ |n(t),Θ1(n(t))) = b.
In particular, if t = 0, then n(t) is an empty history, Θ1(t) = Θ1 by definition, and A(n(t)) =

[0,1]. Consequently, Θ1 = [0, θ0] for some θ0 � b, and E(θ |Θ1) = b. It follows immediately
that θ0 = 2b. �
Proof of Theorem 3 (Only if ). Because any type θ smaller than and sufficiently close to 2b

strictly prefers (2b + 1)/2 over b, it follows that any such type θ also strictly prefers to the
outcome b any non-degenerate distribution q over actions with support contained in [b, (2b +
1)/2].

Consider any strategy μ such that, after any history n(t − 1) such that t is a revelation
stage and support P(θ |n(t − 1)) ∩ [2b,1] �= ∅, the sender chooses a message m that minimizes
E[θ |n(t − 1),m′] among the messages m′ such that support P(θ |n(t − 1),m′) ∩ [2b,1] �= ∅.
Then at the first stage (without loss of generality, suppose that this is a revelation stage), this
strategy calls for sending a message m such that E[θ |m] � [2b + 1]/2 = E(θ |[2b,1]); and by
the law of iterated expectations, for every stage t , E[θ |n(t − 1),m] � E[θ |n(t − 1)]. It is clear
that since Θ1 = [0,2b], this strategy cannot lead to any action that is lower than 2b. On the
other hand, at the terminal stage T , for any history n that can realize if strategy μ is followed,
E(θ |n) � E(θ |n(t − 1)) � · · · � E(θ |n(1)) � (2b + 1)/2, so the action that will be executed
cannot exceed (2b + 1)/2. It follows that the strategy μ induces a lottery over actions whose
support is contained in [2b, (2b + 1)/2], and a type θ = 2b − ε for ε > 0 small enough will
prefer following this strategy to the strategy that induces action b with certainty.

It follows that p is not incentive compatible. �
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