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Abstract
We study cheap-talk pre-play communication in static all-pay auctions. For the com-
plete information case of two bidders, all correlated equilibria are payoff equivalent to
the Nash equilibrium if there is no reserve price, or if it is commonly known that one
bidder has a strictly higher value. Similarly, for the independent private values case of
two bidders with no reserve price, all communication equilibria are payoff equivalent
to the Bayesian Nash equilibrium. Hence, in such environments the Nash equilibrium
and the Bayesian Nash equilibrium predictions are robust to pre-play communication
between the bidders. On the other hand, if there are three or more symmetric bidders,
or two symmetric bidders and a positive reserve price, then with complete information
there may exist correlated equilibria such that the bidders’ payoffs are higher than in
any Nash equilibrium, and with independent private values there may exist communi-
cation equilibria such that the bidders’ payoffs are higher than in any Bayesian Nash
equilibrium. In these cases, pre-play cheap talk may affect the outcomes of the game,
since the bidders have an incentive to coordinate on such equilibria.
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1 Introduction

An all-pay auction is a model of a contest in which the participants expend resources
trying to win a prize, and the prize goes to whoever spends the most. This model is
important for studying various economic phenomena, especially lobbying and other
rent-seeking activities (Hillman and Samet 1987; Baye et al. 1993). It is typically
assumed that in the all-pay auction the bidders choose how much to bid without
any prior contact with each other. Yet, in many situations it is difficult or impossible
to prevent the bidders from engaging in cheap talk before the auction. Thus it is
important to understand whether and how pre-play cheap-talk communication affects
the outcomes of the all-pay auction.

Competition in the all-pay auction is typically intense. For example, if it is com-
monly known that the value of the good is the same for all bidders, then complete
rent dissipation occurs in all Nash equilibria, i.e. the total expected payments of the
bidders are equal to the value of the good, and each bidder gets a zero expected payoff.
Thus, if pre-play communication is allowed, the bidders may want to try to coordi-
nate their bidding in order to avoid cut-throat competition. However, because of the
antagonistic nature of the all-pay auction it is unclear whether informative communi-
cation is possible. A bidder may not want to communicate his bidding intentions or
privately known value truthfully to his opponents because this information could be
used against him. Instead, each bidder, regardless of his value, might want to misguide
his opponents into bidding less aggressively. We show that in some environments pre-
play communication is indeed completely powerless, and the equilibrium outcomes
of the game with communication are payoff equivalent to the equilibrium outcomes of
the all-pay auction without communication. Perhaps more surprisingly, we also show
that there are situations when pre-play communication helps the bidders to coordinate
their behavior so that the intensity of bidding is reduced, and the bidders get higher
payoffs than in the all-pay auction without communication.

To study the all-pay auction with pre-play communication in environments with
complete information we use the solution concept of correlated equilibrium (Aumann
1974, 1987), and in environments with incomplete information—communication
equilibrium (Myerson 1982). According to the revelation principle for games with
communication, which is discussed in Sect. 2, the correlated and communication equi-
libria describe all possible outcomes that can be potentially achieved with the help
of communication in a self-enforcing way.1 In the all-pay auction models that we
study there is either a unique Nash equilibrium, or all Nash equilibria result in the
same payoffs for the bidders. If it happens that in a given environment all correlated
(communication) equilibria are payoff equivalent to the Nash equilibrium, then we can
say that the Nash equilibrium prediction is robust to pre-play communication between
the bidders. However, if there exist correlated (communication) equilibria that are not

1 There are also other reasons to use correlated equilibrium as a solution concept. Correlated equilibrium
has arguably more compelling epistemic foundations than Nash equilibrium (Aumann 1987); it is easier
for boundedly rational players to learn to play correlated equilibrium than Nash equilibrium (Hart and
Mas-Colell 2013). Communication equilibrium is one of the most popular ways of extending the concept of
correlated equilibrium to games with incomplete information but not the only one (Forges 1993; Bergemann
and Morris 2016).
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payoff equivalent to the Nash equilibrium, then pre-play communication may affect
the outcomes of the game. In particular, if in such correlated (communication) equi-
libria the bidders get higher payoffs than in the Nash equilibrium, then they have an
incentive to coordinate on the former. Different ways of organizing communication
between the bidders to realize the outcomes of the correlated and communication
equilibria are discussed in Sect. 5.

In Sect. 3 we study correlated equilibria in the all-pay auction with complete infor-
mation. We show that with two bidders the correlated equilibria are payoff equivalent
to the Nash equilibrium when there is no reserve price, or if the bidders are asym-
metric (Proposition 2). In such cases the all-pay auction is “strategically equivalent”
to a particular zero-sum game, and for two-player zero-sum games the correlated and
Nash equilibria are known to be payoff equivalent (Moulin and Vial 1978). It turns
out that this strategic equivalence does not hold when there is a reserve price and the
bidders are symmetric.2 For this case we construct correlated equilibria that are more
profitable for the bidders than the Nash equilibrium (Example 1 and Proposition 3).
When there are three or more symmetric bidders, such profitable correlated equilibria
exist even when there is no reserve price (Example 2 and Proposition 4). The idea of
the construction is to introduce some imperfect negative correlation in the distribu-
tion of the bids. Say, when one of the bidders bids aggressively, then with a certain
probability his opponents are “suggested” to bid zero, and thus save the cost of their
bids.

In Sect. 4 we study communication equilibria in all-pay auctions with independent
private values. Similarly to the case of complete information, we show that with two
bidders the communication equilibria are payoff equivalent to the unique Bayesian
Nash equilibrium when there is no reserve price (Proposition 6). That is, neither
self-enforcing sharing of private information, nor correlation of play is possible in
this case. However, in other cases there exist communication equilibria that are more
profitable for the bidders than the Bayesian Nash equilibrium. This is demonstrated
in simple settings with binary values for the case of two bidders and a positive reserve
price (Example 3 and Proposition 7), and for the case of three or more bidders and
no reserve price (Proposition 9). The constructions involve correlating the bidders’
play in a way that is similar to the correlated equilibria in Sect. 3. The bidders also
share some private information, but only to a limited extent because it is important to
maintain enough uncertainty about the opponents’ values and play for the construction
to work.

Pre-play communication in auctions and contests is typically studied in the context
of collusion. For example, most of the studies of collusion in static auctions focus on a
scenario in which bidders organize an explicit cartel that allows them to communicate,
enforce coordinated behavior of the bidders in the auction, and facilitate exchange of
side payments between the bidders.3 Bidders’ collusion that is self-enforcing is for

2 Bertoletti (2016), Lizzeri and Persico (2000), and Siegel (2014) study all-pay auctions with reserve
prices.
3 For example, Graham and Marshall (1987) study collusion in second-price auctions, and McAfee and
McMillan (1992) study collusion in first-price auctions.
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the most part considered in the context of repeated auctions.4 In such models the
enforcement of the desired bidders’ behavior is provided by expectations of the future
reactions of opponents.

Only a few papers study collusion in static auctionswhen the behavior of the bidders
in the auction cannot be directly controlled. Marshall and Marx (2007, 2009), and
Lopomo et al. (2011) study collusion in first-price, second-price, and ascending-bid
auctions under the following scenario: the bidders make reports to a “center”; based
on these reports, the center privately recommends a bid to be made by each bidder,
and requires payments from the bidders.5 If we drop the possibility of exchanging
side payments before the auction, then such a model of collusion is equivalent to
assuming that the bidders play some particular communication equilibrium. Lopomo
et al. (2011) show that in the first-price auction with discrete bids such collusion
is completely ineffective: all collusive equilibria are payoff equivalent to the unique
Bayesian Nash equilibrium.6 However, Marshall and Marx (2007) show that in the
second-price auction such collusion works equally well as collusion in a model where
the bidders behavior can be controlled by the cartel. In fact, in second-price auctions
viable collusion is possible even when the bidders cannot exchange side payments,
i.e. there exist communication equilibria that are different from the Bayesian Nash
equilibria, and are more profitable for the bidders (Marshall and Marx 2009).

In some cases it is reasonable to assume that bidders can disclose private information
about their valuations in a verifiable way. Benoit andDubra (2006), Hernando-Veciana
and Tröge (2011), and Tan (2016) study the bidders’ individual decisions to disclose
information in winner-pay auctions. Kovenock et al. (2015) and Szech (2011) study
this problem in all-pay auctions. The relation of such an approach to our approach is
discussed in Sect. 4.1.

There are also many experimental studies of the effect pre-play communication
in games. While we are unaware of any research that studies exactly our setting,
there is some related work. For example, Harbring (2006) considers the effect of
communication in a repeated all-pay auction with a cap on the maximal possible
bids. Though there were only finitely many rounds, the bidders’s behavior resembled
collusive play in an infinitely repeated game, and the possibility of communication led
to lower bids and higher payoffs.7 More generally, experimental research has revealed
that pre-play communication often increases cooperation between the players beyond
what is predicted by standard game-theoretic models, and this effect is attributed to a
combination of norms, empathy, nonverbal cues, etc. (Camerer 2003).

The rest of the paper is organized as follows. Themodel and the definitions of corre-
lated and communication equilibria are in Sect. 2. The all-pay auctions with complete
information and incomplete information are studied in Sects. 3 and 4, respectively.
Discussion is in Sect. 5. The proofs are relegated to the Appendix unless stated other-
wise.

4 For example, Aoyagi (2003) studies self-enforcing collusion with pre-play communication in repeated
auctions.
5 Lopomo et al. (2005) and Garratt et al. (2009) study self-enforcing collusion without pre-auction side
payments, but with a possibility of resale.
6 See also Azacis and Vida (2015) for related results for the first-price auction with a continuum of bids.
7 For a survey of other experimental research on contests see Dechenaux et al. (2015).

123



Correlated equilibria and communication equilibria in…

2 Model

There are n ≥ 2 bidders. Bidder i chooses a bid bi from a set of possible bids Ai .
If there is no reserve price, then Ai = [0,∞). If there is a reserve price r > 0, then
Ai = {0} ∪ [r ,∞), i.e., bidder i can either submit a “null” bid bi = 0, or an “active”
bid bi ≥ r .8 If bidder i bids bi , and the other bidders bid b−i , then bidder i wins the
good with probability ρi (bi , b−i ). If there is no reserve price, then

ρi (bi , b−i ) =
⎧
⎨

⎩

0
1
1

#{k: bk=bi }

if
if
if

bi < max j �=i b j

bi > max j �=i b j

bi = max j �=i b j

If there is a reserve price r > 0, then

ρi (bi , b−i ) =
⎧
⎨

⎩

0
1
1

#{k: bk=bi }

if
if
if

bi = 0 or
{
bi ≥ r and bi < max j �=i b j

}

bi ≥ r and bi > max j �=i b j

bi ≥ r and bi = max j �=i b j

We consider both complete and incomplete information environments.
Complete information. Bidder i has a valuation vi > 0 for the good, and the bidders’

values (v1, . . . , vn) are commonly known. If bidder i bids bi , and the other bidders
bid b−i , then his payoff is ui (bi , b−i ) = viρi (bi , b−i ) − bi .

In the complete information casewe study correlated equilibria andNash equilibria.
To define a correlated equilibrium suppose there is a neutral trustworthy mediator
who makes non-binding private recommendations (possibly stochastic) to each bidder
of which bid to submit. The recommendations are made according to a correlation
rule μ, which is a probability measure over the set of all possible bid profiles A =∏n

j=1 A j .9 Each bidder then decideswhich bid to submit as a function of themediator’s

recommendation. Thus a pure strategy of bidder i is b̂i : Ai → Ai .

Definition 1 A correlation rule μ is a correlated equilibrium if each bidder finds it
optimal to obey the mediator’s recommendations:

∫

A
ui (b) μ(db) ≥

∫

A
ui
(
b̂i (bi ) , b−i

)
μ(db) for every i and b̂i (·) .

The significance of correlated equilibrium for studying all-pay auctions with com-
munication is due to the revelation principle.10 According to this principle, for any
Nash equilibrium of a game that consists of some communication protocol followed
by the all-pay auction, there exists an outcome equivalent correlated equilibrium of

8 Alternatively one can keep the action set Ai = [0,∞), but this will result in an unnecessary multiplicity
of equilibria because there will be multiple possible “inactive” bids.
9 All considered sets and functions are Borel measurable; all considered probability measures are Borel,
with topology of weak convergence.
10 See Aumann (1974, 1987) and Myerson (1982). Cotter (1991) provides the revelation principle for
settings with large action and type spaces.
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the all-pay auction. There is no loss of generality in requiring that for each player it is
optimal to obey the mediator’s recommendations.

Let μi be the marginal probability measure of μ on Ai :

μi (Ei ) =
∫

Ei ×A−i

μ(db) for every Ei ⊆ Ai .

A Nash equilibrium is a correlated equilibrium μ∗ such that each bidder’s behavior is
independent from the actions of the opponents, i.e., μ∗ is a product of its marginals∏n

j=1 μ∗
j . Hence, both Nash and correlated equilibria are joint plans of actions that

are individually self-enforcing, but correlated equilibrium allows for additional coor-
dination by correlating recommendations to the bidders. When we encounter a Nash
equilibrium, we write it as a profile of the individual mixed actions

(
μ∗
1, . . . , μ

∗
n

)
.

Incomplete information. Bidder i privately observes ownvaluevi ∈ Ti = [vi , vi
] ⊂

R+. The value of bidder i is distributed according to a probability measure Pi on Ti ,
independently of the valuations of the other bidders. This information structure is
assumed to be common knowledge. The payoff of bidder i with value vi , who bids
bi , while the other bidders bid b−i , is ui (bi , b−i ; vi ) = viρi (bi , b−i ) − bi . Denote
T =∏n

j=1 Tj , and let P be a product measure
∏n

j=1 Pj , and P−i =∏ j �=i Pj .
In the incomplete information case we study communication equilibria and

Bayesian Nash equilibria. To define a communication equilibrium suppose the bidders
first privately report their values to a neutral trustworthy mediator, who then makes
non-binding private recommendations (possibly stochastic) to each bidder of which
bid to submit. The recommendations are made according to a communication rule μ,
which is a family of probability measures {μ(·|v)}v∈T . That is, for each profile of type
reports v submitted to the mediator, μ(·|v) is a probability measure over the set of all
possible bid profiles A. Each bidder decides which type to report, and which bid to
submit as a function of the mediator’s recommendation. Thus a pure strategy of bidder
i with value vi specifies v̂i ∈ Ti , the value to be reported, and b̂i : Ai → Ai , the
rule for translating recommendations into bids.

Definition 2 A communication rule μ is a communication equilibrium if Pi -almost
every type of each bidder finds it optimal to report their true type and obey the medi-
ator’s recommendations:

∫

T−i

(∫

A
ui (b; vi ) μ(db|v)

)

P−i (dv−i )

≥
∫

T−i

(∫

A
ui
(
b̂i (bi ) , b−i ; vi

)
μ(db|̂vi , v−i )

)

P−i (dv−i )

for every i , Pi -a.e. vi , every v̂i , and b̂i (·) .

Similarly to the case of correlated equilibrium, the significance of communica-
tion equilibrium for studying all-pay auctions with communication in a setting with
nonverfiable information is due to the revelation principle. For any Bayesian Nash
equilibrium of a game that consists of some communication protocol followed by the
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all-pay auction, there exists an outcome equivalent communication equilibrium of the
all-pay auction. There is no loss of generality in requiring that for each player reporting
their true type and obeying the mediator’s recommendation is optimal.

Let μi (·|vi ) be the marginal probability measure of μ on Ai conditional on vi :

μi (Ei |vi ) =
∫

T−i

(∫

Ei ×A−i

μ(db|vi , v−i )

)

P−i (dv−i ) for every Ei ⊆ Ai .

A Bayesian Nash equilibrium is a communication equilibrium μ∗ such that each bid-
der’s behavior is independent from the opponents’ reports and actions, i.e., for every
v = (v1, . . . , vn), μ∗ (·|v) is a product of marginals

∏n
j=1 μ∗

j

(·|v j
)
. Thus, relative to

the Bayesian Nash equilibrium, communication equilibrium allows for self-enforcing
sharing of private information between the bidders, as well as for coordination via cor-
relation of the recommended bids. When we encounter a Bayesian Nash equilibrium,
we write it as a profile

(
μ∗
1, . . . , μ

∗
n

)
, where μ∗

i is
{
μ∗

i (·|vi )
}

vi ∈Ti
for every i .

3 All-pay auctions with complete information

In this section we study and compare the Nash equilibria and correlated equilibria of
the all-pay auction under complete information. The Nash equilibria of this game are
well understood, and we simply summarize the existing results. We are not aware,
however, of any characterizations of the set of correlated equilibria of the all-pay
auction.

In games with a finite number of actions the set of correlated equilibria is defined
by finitely many linear inequalities: if player i has |Ai | possible actions, then there are
|Ai | (|Ai | − 1) obedience constraints that ensure that he has no incentive to deviate
from the recommended actions. It is thus straightforward to describe the extreme
points of this set and to find the set of the players’ payoffs achievable by the correlated
equilibria. However, if each player has a continuum of possible actions, then there is
a double continuum of obedience constraints, which is difficult to work with.11 One
possible approach is to discretize the action spaces and to use linear programming
tools. This path is pursued, for example, in Lopomo et al. (2011) in their study of
collusive schemes in the first price auction. In this paper we take a different route. For
some cases we characterize correlated equilibria by exploiting a connection between
the all-pay auction and a certain class of zero-sum games, and in other cases we
construct correlated equilibria directly.

3.1 Two bidders

We begin with the case of two bidders. Denote the difference in the bidders’ valuations
by�v = v1−v2, andwithout loss of generality assume�v ≥ 0. To avoid uninteresting

11 The principal-agent literature often uses a first-order approach for describing an agent’s best response.
This approach is not going to work here because a bidder’s expected payoff is typically discontinuous in
own bid.
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cases we assume that the valuations of both bidders are strictly above the reserve price
r ≥ 0.

Proposition 1 In a complete information environment with two bidders:

(i) If r = 0, there is a unique Nash equilibrium. Bidder 1 bids uniformly with density
1
v2

on [0, v2]; bidder 2 bids 0with probability �v
v1

, and bids uniformly with density
1
v1

on [0, v2] otherwise. The bidders’ payoffs are U1 = �v, U2 = 0.

(ii) If v1 > v2 > r > 0, there is a unique Nash equilibrium. Bidder 1 bids r with
probability r

v2
, and bids uniformly with density 1

v2
on (r , v2] otherwise; bidder

2 bids 0 with probability �v+r
v1

, and bids uniformly with density 1
v1

on (r , v2]
otherwise. The bidders’ payoffs are U1 = �v, U2 = 0.

(iii) If v1 = v2 = v > r > 0, there is a continuum of Nash equilibria. Bidder i bids 0
and r with probabilities α r

v
and (1 − α) r

v
(where α ∈ [0, 1]), respectively, and

bids uniformly with density 1
v

on (r , v] otherwise; bidder j bids 0with probability
r
v

, and bids uniformly with density 1
v

on (r , v] otherwise. The bidders’ payoffs
are U1 = U2 = 0.

Proof Part (i) follows from Proposition 2 in Hillman and Riley (1989), part (ii) from
Proposition 1 in Bertoletti (2016), and part (iii) from Proposition 3 in Siegel (2014).

��
The Nash equilibria of the complete information all-pay auctions exhibit “rent

dissipation”. The bidder with the lower valuation gets a zero payoff, while the bidder
with the higher valuation gets a payoff equal to the difference in the valuations. In the
case of symmetric bidders the rents are fully dissipated: the expected total payment
of the bidders is equal to the value of the good, and each bidder gets a zero payoff.

In general the set of correlated equilibrium payoffs is at least as large as the convex
hull of theNash equilibriumpayoffs: the players can use a public randomization device
(or replicate it by a jointly controlled lottery) to coordinate on different Nash equilibria
with different probabilities.12 In the all-pay auction, however, this observation is not
useful, because either the Nash equilibrium is unique, or all Nash equilibria yield the
same payoffs for the bidders.

It is known that the sets of correlated equilibriumpayoffs andNash equilibriumpay-
offs coincide in two-player zero-sum games (Rosenthal 1974). Regardless of whether
we consider Nash or correlated equilibrium, each player has a strategy that guarantees
him an expected payoff at least as large as his value of the game. Hence, by theminmax
theorem, the players’ expected payoffs must be equal to their respective values under
either solution concept. While the all-pay auction is not a zero-sum game, in some

12 For example, in the second-price auction without the reserve price there are many Nash equilibria: the
truthful equilibrium, and infinitely many equilibria involving weakly dominated strategies (Blume and Hei-
dhues 2004). If the bidders correlate their play, then it is possible to sustain the following collusive scheme.
Before the auction a designated winner is randomly chosen; during the auction the bidders coordinate on
the equilibrium where the designated winner obtains the good for free by submitting a very high bid while
the other bidders submit zero bids. See Section V. A in the working paper version of Marshall and Marx
(2009).
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cases it turns out to be “strategically equivalent” to a particular zero-sum game (in a
sense of Moulin and Vial 1978). The next result takes advantage of this observation
and shows that the bidders’ correlated equilibrium payoffs are the same as under Nash
equilibrium.13

Proposition 2 In a complete information environment with two bidders, such that
r = 0 or v1 > v2, every correlated equilibrium is payoff equivalent to the Nash
equilibrium.

Proof Consider an auxiliary game with the same players and the same action spaces
as in the all-pay auction, and with the payoffs derived from the all-pay auction payoffs
for every

(
bi , b j
) ∈ A as follows:

wi
(
bi , b j
) = 1

vi
ui
(
bi , b j
)+ 1

v j
b j − 1

2
= ρi
(
bi , b j
)− 1

vi
bi + 1

v j
b j − 1

2
(1)

Note that 1
vi

is strictly positive and 1
v j

b j − 1
2 is independent of bi . This implies that

the best response of each bidder in the auxiliary game is the same as in the all-pay
auction, and thus the two games have the sameNash equilibria and the same correlated
equilibria.

Next we show that the auxiliary game is zero-sumwhen r = 0 or v1 > v2. If r = 0,
then
∑2

j=1 ρ j (b) = 1 for every b ∈ A, and thus
∑2

j=1 w j (b) =∑2
j=1 ρ j (b)−1 = 0

for every b ∈ A. If r > 0, then
∑2

j=1 ρ j (b) = 1 for every b, except for b = (0, 0).
Note, however, that bid 0 is not rationalizable for bidder 1 when v1 > v2. This is
because no rational bidder bids above his value, and thus bidder 1 strictly prefers to
bid slightly above v2 to bidding 0. Hence, although the auxiliary game is not zero-sum,
it can be turned into a zero-sum game by removing bid 0 for bidder 1. This operation
will not disturb the Nash equilibria or correlated equilibria because bidding 0 is not
rationalizable for player 1, and is thus not played in either equilibrium.

We will use the following two properties of the zero-sum games: (i) the players’
expected payoffs from any correlated equilibrium and from any Nash equilibrium of a
zero-sum game are equal to their respective values of the game; (ii) if μ is a correlated
equilibrium of a zero-sum game, then the pair of its marginals (μ1, μ2) is a Nash
equilibrium. These properties have been established for finite games (Lemma 1 and
Corollary 1 in Rosenthal 1974), but it is straightforward to show that they also hold
for zero-sum games with infinite strategy sets which have a Nash equilibrium.

Let
(
μ∗
1, μ

∗
2

)
be the Nash equilibrium strategy profile, and

(
W ∗

1 , W ∗
2

)
be the Nash

equilibrium bidders’ payoffs in the auxiliary zero-sum game. This Nash equilibrium
is unique when r = 0 or v1 > v2 (Proposition 1). Then the expected payoff of player

13 The result in Proposition 2 for the case r = 0 follows from a more general result, Proposition 6 in
Sect. 4.1, that allows for incomplete information. However, the proof here is different and more intuitive.
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i from any correlated equilibrium μ in the all-pay auction is

∫

A
ui (b) μ(db) = vi

(∫

A
wi (b) μ(db) − 1

v j

∫

A
b jμ(db) + 1

2

)

= vi

(

W ∗
i − 1

v j

∫

A j

b jμ
∗
j (db j ) + 1

2

)

where the first equality uses the definition of wi (·) in (1); the second equality is
true because

∫

A wi (b) μ(db) = W ∗
i by property (i) mentioned above, (μ1, μ2) is a

Nash equilibrium by property (ii), and (μ1, μ2) = (μ∗
1, μ

∗
2

)
by the uniqueness of the

Nash equilibrium. Hence, every correlated equilibrium of the all-pay auction is payoff
equivalent to the Nash equilibrium.14 ��

One may conjecture that the payoff equivalence of Nash and correlated equilibria
has something to do with the fact that the Nash equilibrium is unique when r = 0 or
v1 > v2. While there may be some connection, the uniqueness of Nash equilibrium
in general does not imply payoff equivalence of Nash and correlated equilibria.15

Lopomo et al. (2011) provide a result of a similar kind for the first-price auctionwith
two symmetric bidders and incomplete information. They show that collusion based
on bid recommendations and pre-auction side payments is completely ineffective:
every such collusive scheme is payoff equivalent to the unique Nash equilibrium of
the auction. This implies that in the setting of Lopomo et al. (2011) the correlated
equilibria are also payoff equivalent to the unique Nash equilibrium. The first-price
auction is not strategically equivalent to a zero-sum game, and the proof in Lopomo
et al. (2011) seems to rely on very different ideas.16

The case when v1 = v2 = v and r > 0 is distinct. The proof of Proposition 2
cannot be extended to cover this case: though the all-pay auction can still be shown
to be strategically equivalent to the auxiliary game, this game is no longer a zero-sum
game because the bid profile (b1, b2) = (0, 0) cannot be ruled out. (Indeed, in some
Nash equilibria both bidders submit null bids with positive probability.) Next, we
show that in this case there exist correlated equilibria that are not payoff equivalent
to the Nash equilibrium. Paradoxically, the presence of the reserve price may help the
bidders to avoid complete rent dissipation and thus be to the bidders’ advantage.

Example 1 Let v1 = v2 = 1, and r ∈ (0, 1). The bidders are given recommendations
according to the following probability distribution, where “bid above r” means “bid

14 An alternative way to finish the proof is to use Theorem 3 from Moulin and Vial (1978), which shows
that for any game that is strategically equilvalent to a zero-sum game there exist no “correlation scheme”
that improves upon all Nash equilibrium payoffs for both players. The class of “correlation schemes” in
Moulin and Vial (1978) includes correlated equilibria, as well as some other joint action plans that require
certain commitment on the part of the players.
15 See example on p. 204 in Moulin and Vial (1978).
16 Specifically, they formulate the collusive problem as a linear programming problem, and, by discretizing
the bid spaces, manage to derive some properties of the dual problem which imply the result.
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uniformly on (r , 1] ”:

1’s bid \ 2’s bid bid 0 bid above r

bid 0 0 r (1 − r)

bid r r2 0
bid above r (1 − r) r (1 − r)2

If bidder 1 is suggested to bid 0, then he knows that the opponent bids aggressively,
and thus he is content to submit a null bid. If bidder 1 is suggested to bid r , then he
knows that the opponent bids 0, and thus his best response is to bid r . If bidder 1 is
suggested to bid above r , then his probability distribution over the opponent’s bids
is the same as in one of the Nash equilibria, and thus he is indifferent between all
bids not higher than 1. Whether bidder 2 is suggested to bid 0 or to bid above r , he is
indifferent between all bids not higher than 1.

Bidder 1 gets a payoff of 1 − r when he is suggested to bid r , and a zero expected
payoff otherwise. Hence, his ex ante payoff is r2 (1 − r). The expected payoff of
bidder 2 is zero.

Let us compare the above correlated equilibrium with a Nash equilibrium for some
α ∈ [0, 1] (described in part (iii) of Proposition 1). Under the Nash equilibrium bid
profiles (0, 0) and (r , 0) are playedwith probabilities αr2 and (1 − α) r2, respectively,
while under the correlated equilibrium (0, 0) is never played, and (r , 0) is played
with probability r2. Hence, under the correlated equilibrium the probability weight
is shifted away from an unfortunate event (where both bidders bid zero and no one
wins the good) to a nice event (where bidder 1 wins the good at a low price r ). Next,
under the Nash equilibrium the event when bidder 1 bids 0 and bidder 2 bids above r
takes place with probability αr (1 − r), and the event when bidder 1 bids r and bidder
2 bids above r takes place with probability (1 − α) r (1 − r). Under the correlated
equilibrium the former event takes place with probability r (1 − r) and the latter event
does not happen. Hence, under the correlated equilibrium the probability weight is
shifted away from an unprofitable event (where bidder 1’s bid r is wasted because
bidder 2 bids above r ) to a more profitable event (where bidder 1 bids 0 instead).
Thus, the correlated equilibrium results in positive profits for bidder 1, while every
Nash equilibrium features full rent dissipation.

The next result describes some other payoffs that can be achieved with correlated
equilibria.17

Proposition 3 In a complete information environment with two bidders, such that
vi = v for i = 1, 2 and v > r > 0, for every (U1, U2) ∈ R

2+ such that

{
U1 + r2

v2
U2 ≤ r2(v−r)

v2

r2

v2
U1 + U2 ≤ r2(v−r)

v2

17 We conjecture that at least for some parameters no other payoffs can be achieved by correlated equilibria,
but we have not managed to prove this because of the technical difficulties outlined in the beginning of this
section.

123



G. Pavlov

there exists a correlated equilibrium that gives bidder i payoff Ui .

3.2 Three or more bidders

Here we consider the case of three or more bidders, and we restrict attention to situa-
tions where the bidders are symmetric. Suppose each bidder has a valuation v that it
is strictly above the reserve price r ≥ 0. It is known that in this case there are many
Nash equilibria, in every one of them complete rent dissipation takes place, and each
bidder gets a zero payoff.18

Unlike in the case of two players, a connection between the all-pay auction and a
certain class of zero-sum games is not going to allow us to obtain an analog of Propo-
sition 2. In zero-sum games with three or more players there is no minmax theorem to
rely upon, and the sets of correlated equilibrium payoffs and Nash equilibrium payoffs
no longer coincide. Hence, even though in the case of no reserve price it is possible
to construct an auxiliary zero-sum game that is strategically equivalent to the all-pay
auction, this does not imply that the correlated equilibria and Nash equilibria are pay-
off equivalent. Indeed, in the next example we describe a correlated equilibriumwhere
the bidders get positive payoffs.

Example 2 Let n = 3, v = 1, and r = 0. Consider the following symmetric correlation
rule. First, a pair of bidders is randomly chosen, with each pair being equally likely
to be chosen. Next, the bidders receive private bid recommendations without being
told whether they have been chosen. The bidder who is not chosen is recommended to
bid 0, and the chosen bidders are given recommendations according to the following
probability distribution, where “bid low” means “bid uniformly on

(
0, 1

2

]
”, and “bid

high” means “bid uniformly on
( 1
2 , 1
]
”:

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 2
26 0

bid low 2
26

7
26

5
26

bid high 0 5
26

5
26

If a bidder is suggested to bid high, then he knows that he competes against one
chosen opponent who is equally likely to bid low or high. The probability of winning
with bid b ∈ [0, 1] is equal to b, and thus the payoff from any such bid is 0.

If a bidder is suggested to bid low, then he knows that he competes against one
chosen opponent who either bids 0, bids low, or bids high, with probabilities 1

7 ,
1
2 , and

5
14 , respectively. The probability of winning with bid b > 0 is equal to

min
{

b + 1
7 ,

5
7b + 2

7

}
, and thus the payoff from any b ∈ (0, 1

2

]
is 1

7 , and the pay-

off from any b ∈ ( 12 , 1
]
is below 1

7 .

18 This follows from Proposition 8 in Sect. 4.2. For a characterization of Nash equilibria in the asymmetric
cases when there is no reserve price see Baye et al. (1996).
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If a bidder is suggested to bid 0, then he knows that either hewas not chosen and thus
faces two potentially active opponents, or that he was chosen but only his opponent
was suggested to bid above 0. It is possible to show that the probability of winning
with bid b > 0 is equal to min

{ 14
15b2 + 8

15b, 2
3b2 + 1

3

}
, and thus the payoff from any

b > 0 is nonpositive.
In each case the bidder is willing to comply with the recommendation. Each chosen

bidder gets an expected payoff of 1
7 when he is suggested to bid low (which happens

with probability 7
13 ), and a zero expected payoff otherwise. Each pair of bidders is

equally likely to be chosen, and thus each bidder’s ex ante payoff is 2
39 .

This bid rotation correlation scheme holds together due to careful management of
the amount of information revealed to each player. To see the basic idea, note first that
there exists a Nash equilibrium such that two bidders bid uniformly on (0, 1], and the
third bidder bids 0. Second, suppose that in advance a mediator randomly chooses two
bidders who are to take active roles in the above Nash equilibrium, and each bidder is
privately informed of his role. Finally, suppose that with a small probability a mediator
“cheats” one of the chosen bidders, and, instead of informing him that he is to take an
active role, tells him to bid 0. If the probability of such “cheating” is sufficiently small,
then the bidders will still be content to comply whenever they are recommended to
bid 0. This “cheating” reduces the intensity of bidding, and thus raises the bidders’
payoffs.19

The next result describes some other payoffs that can be obtained in symmetric
correlated equilibria for any given reserve price r and any number of bidders n ≥ 3.20

In particular, the result implies that in the correlated equilibrium the bidders can avoid
full rent dissipation. Even in the limit, as the number of bidders increases without
bound, the sum of the bidders’ expected payoffs does not have to go to zero (e.g.,
when r = 0, in the best constructed correlated equilibrium nU → 2

9v as n → ∞).

Proposition 4 In a complete information environment with n ≥ 3 symmetric
bidders, such that vi = v for every i and v > r ≥ 0, for every U ∈[
0, 2(v−r)

n
(n−2)v2+(n−2)vr+2nr2

(9n−14)v2+(6n−8)vr+(n+6)r2

]
there exists a correlated equilibrium that gives

each player payoff U.

4 All-pay auctions with incomplete information

In this section we study and compare Bayesian Nash equilibria and communication
equilibria of the all-pay auction under incomplete information. The communication
equilibrium solution concept is similar to the correlated equilibrium in that it allows
for coordination between the players via correlation of the recommended actions. In

19 The actual correlated equilibrium in Example 2 is slightly more involved: the active bidders are in
addition recommended whether to bid high or low, and the probabilities of the mediator’s profiles of
recommendations are adjusted to ensure incentive compatibility.
20 It is possible to construct correlated equilibria with asymmetric payoffs, but we do not present them
here. We do not claim that the upper bound on the payoff in the presented symmetric correlated equilibria
is the highest one could achieve.
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addition, communication equilibrium gives the players possibilities to talk about their
private information. Like in the case of complete information, we would like to know
under what circumstances there exist communication equilibria that are not payoff
equivalent to the Bayesian Nash equilibrium, and, whenever such communication
equilibria exist, we would like to understand how they work.

Characterizing communication equilibria in games with large action spaces is chal-
lenging, in much of the same way as characterizing correlated equilibria is, because
one has to deal with many obedience constraints. In addition, the players must be
given incentives to report their types truthfully, and one has to worry about compound
deviations when a player first misreports his type and then disobeys the recommended
actions. For a class of environments we manage to demonstrate payoff equivalence
between Bayesian Nash equilibria and communication equilibria using an approach
similar to that under complete information (Proposition 2 in Sect. 3). For another
class of environments we build on the results on correlated equilibria from Sect. 3 and
construct communication equilibria that are distinct from Bayesian Nash equilibria.

4.1 Two bidders

First, we summarize some of the existing results on Bayesian Nash equilibria with
two bidders that we will refer to in this section.21

Proposition 5 In an incomplete information environment with two bidders:

(i) Let r = 0, bidder i’s value be continuously distributed on [0, 1]with density that is
continuously differentiable and positive on (0, 1), independently of the opponent’s
value. There is a unique Bayesian Nash equilibrium, this equilibrium is in pure
strategies, and it is strictly monotonic.

(ii) Let r > 0 and bidder i’s value be 0 or v (such that v > r) with probabilities pi

and 1− pi , respectively, independently of the opponent’s value. In every Bayesian
Nash equilibrium type 0 of each bidder gets a zero payoff and type v of each bidder
gets a payoff of max {pv − r , 0}, where p = max {p1, p2}.

Proof Part (i) follows from Theorem 1 in Amann and Leininger (1996). See the
Appendix for the proof of part (ii). ��

Our first result on communication equilibria is about the case of no reserve price.
Note that it involves rather mild restrictions on the distributions of the players valua-
tions. Part (i) of Proposition 5 describes one set of sufficient conditions for existence of
the unique Bayesian Nash equilibrium, but there are also others.22 Note that Bayesian
Nash equilibrium often fails to exist in the all-pay auction with no reserve price when
the bidders’ values are equal to zero with positive probability, and so ruling out such
distributions does not seem very restrictive.

21 There exist other results on Bayesian Nash equilibria of the all-pay auctionwith incomplete information,
but many of them are about the case of interdependent valuations which is not covered in this paper. See,
for example, Krishna and Morgan (1997), Lizzeri and Persico (2000), Siegel (2014).
22 For example, the results of Siegel (2014) imply that the Bayesian Nash equilibrium exists and is unique
when there are finitely many strictly positive values for every bidder.
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Proposition 6 Consider an incomplete information environment with two bidders and
no reserve price such that the values of the bidders are strictly positive with probability
one, independently distributed, and there exists a unique Bayesian Nash equilibrium.
Then every communication equilibrium is interim payoff equivalent to the Bayesian
Nash equilibrium.

The idea behind the result can be understoodwith the help of the connection between
the all-pay auction and the auxiliary zero-sum game introduced in the proof of Propo-
sition 2. Since the payoffs of the two games are related according to Eq. (1), it is
easy to see that the best responses for each type of each bidder for the two games
coincide, even when there is uncertainty about the opponent’s value. Suppose, first,
that the bidders are not allowed to communicate about their private information. Then
we can consider the all-pay auction as a strategic form game, and, in a similar way as
in Proposition 2, we can show that using correlated recommendations does not help
to achieve payoffs different from the Bayesian Nash equilibrium payoffs.

Next, suppose that the bidders are allowed to communicate about their private
information. One would expect that in a zero-sum game the players are not too keen
on truthfully revealing their private information because it may be used against them
by the opponents. This is indeed confirmed by Proposition 6 that says that no payoff-
consequential voluntary sharing of private information is possible, and this result
can be viewed as a version of the “no trade” result (Milgrom and Stokey 1982).
Note that in any communication equilibrium a bidder can play the following strategy:
(i) regardless of own type randomize over the type reports according to the prior
probability distribution; (ii) regardless of the mediator’s recommendations choose the
same bids as in the Bayesian Nash equilibrium. It turns out that in our auxiliary zero-
sum game each player can guarantee himself at least his Bayesian Nash equilibrium
payoff by playing such a strategy. The no trade result then follows from the fact that
the players have common prior, and that every allocation, including the Bayesian Nash
equilibrium outcome, is ex ante Pareto efficient (because the game is zero-sum).

Similar to the case of complete information, a result analogous to Proposition 6 is
likely to hold in some environments with strictly positive reserve price if we can rule
out the case when both bidders choose null bids. This, for example, happens when
there is no overlap in the supports of the bidders’ valuations, say, v2 < v1, and the
reserve price is low enough, v1 > r . Then bid 0 is not rationalizable for bidder 1 for
any beliefs over the opponent’s types, because he prefers to bid slightly above v2 to
bidding 0. It remains an open question whether results analogous to Proposition 6 hold
when the bidders have correlated or interdependent values.23

There exist some related results for the first-price auction under incomplete infor-
mation. As mentioned in the previous section, Lopomo et al. (2011) study a model of
collusion with pre-auction communication, side payments and bid recommendations
in the first-price auction with two bidders. They show that in a symmetric environment
with two possible types (with or without reserve) and discrete bid spaces the collusive

23 If bidder i is uncertain about his valuation vi , then a transformation of his payoff according to formula
(1) is likely to change his best response, because in general E

[
1/vi
] �= 1/E

[
vi
]
. For the case of correlated

values it is unclear how part (i) of the deviational strategy described in the previous paragraph has to be
adjusted in order to guarantee a bidder his Bayesian Nash equilibrium payoff.
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equilibria (and thus communication equilibria) are payoff equivalent to the unique
Bayesian Nash equilibrium.24 Azacis and Vida (2015) study a similar environment in
a model with a continuum of bids. They show that several restricted versions of com-
munication equilibrium are payoff equivalent to the Bayesian Nash equilibrium, and
they conjecture that the same is true for the canonical communication equilibrium.25

There are also several recent papers that apply the tools of Bayesian Persuasion and
Information Design to various models of contests, including the all-pay auction. See,
for example, Antsygina and Teteryatnikova (2022) for discussion of recent work in
this area. The information design approach envisions an omniscient mediator who is
assumed to have all information andwhodecides howmuch information to reveal to the
players through signals (Bergemann and Morris 2019). To the best of our knowledge
these papers on contests restrict attention to a mediator using only public signals (e.g.
Antsygina and Teteryatnikova 2022), or to a mediator using private signals under var-
ious restrictions (e.g. Chen 2019). In such a framework there is obviously no concern
with incentives for information revelation by the players, and nontrivial correlation of
play as in this paper cannot arise because of restrictions on the allowed signals.

Kovenock et al. (2015) consider the incentives of the bidders in the all-pay auction
to share their private information which is assumed to be verifiable. First, each bid-
der decides whether to disclose his value to the opponent, after that the bidders play
the all-pay auction according to the Bayesian Nash equilibrium given their updated
beliefs. In the case when the bidders’ disclosure decisions take place after they observe
the realizations of their values there exist equilibria with full information disclosure
as well as equilibria without any information sharing. In the model of Kovenock et al.
(2015) the bidders can hide their information but cannot lie about it, and this makes
it is easier to achieve information revelation than in our setting. On the other hand,
our model is more conducive to sustaining information revelation in the following
respect. In Kovenock et al. (2015) the bidders’ payoffs following any disclosure deci-
sion are determined by the unique continuation Bayesian Nash equilibria given the
beliefs, but in our setting there may be multiple continuation correlated equilibria, and
thus the bidders’ payoffs are not necessarily uniquely determined by the beliefs. We
demonstrate in the next example how this feature allows the provision of incentives
for information revelation.

Example 3 Let r ∈ (0, 1), bidder 1’s value is 0 or 1 with probabilities p1 and 1 − p1,
bidder 2’s value is 1 with probability 1. By part (ii) of Proposition 5 the Bayesian Nash
equilibrium payoff of each bidder with value 1 is max {p1 − r , 0}.

Consider the following scenario with pre-auction communication. Bidder 1 sends a
cheap talk message to bidder 2, and then the bidders play the all-pay auction according
to Bayesian Nash equilibrium given the updated beliefs. It is easy to see that there is no
cheap-talk equilibrium where bidder 1 truthfully reveals his type. If bidder 2 believes

24 Lopomo et al. (2011) check the robustness of the result by studying numerically other environments
with two bidders.
25 Azacis and Vida (2015) also present several results on the optimal collusive schemes in the first-price
auctionwith omniscientmediatorwho is assumed to know the bidders values. In such amodel the bidders can
generally do better than in the Bayesian Nash equilibrium without communication: the mediator selectively
reveals information on the bidders’ values to induce asymmetric beliefs which lead to less aggressive
bidding. Bergemann et al. (2017) also study related constructions.
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the announcement, then, after learning that v1 = 0, bidder 2 bids r and expects to
win with probability 1; after learning that v1 = 1, the bidders play the Bayesian Nash
equilibrium that yields a zero payoff to each bidder. But then bidder 1 of type 1 can
do better by reporting type 0, and then bidding slightly above r . This observation can
be generalized to show that there are no cheap talk equilibria that result in payoffs
that are different from the Bayesian Nash equilibrium payoffs of the game without
communication.26

This is no longer true if after a cheap talk announcement the bidders can correlate
their play. Let p1 ∈ (0, r), so that the Bayesian Nash equilibrium payoffs of the
game without communication are zero for either type of bidder 1. Suppose type 0
of bidder 1 sends message m, and type 1 randomizes between messages m and m′,
so that the posterior beliefs that bidder 1’s type is 0 following these two messages
are r + r2 (1 − r) and 0, respectively. After message m the bidders play according
to the Bayesian Nash equilibrium, and after message m′ according to the correlated
equilibrium from Example 1. Type 0 of bidder 1 has no incentive to deviate because
he is not interested in bidding anything other than 0. Type 1 of bidder 1 is willing
to randomize between the messages because his expected payoff in either case is
r2 (1 − r).

Next we show that in situations with two sided uncertainty there can also exist
communication equilibria that result in bidders’ payoffs that are higher than in the
Bayesian Nash equilibrium. The behavior of the bidders of type v is coordinated in a
way that is similar to the correlated equilibria in the complete information case, and
when p = 0 the construction is identical to that in the proof of Proposition 3 for the
case of symmetric payoffs.

Proposition 7 Suppose there are two bidders and r > 0. Each bidder’s value is 0 or
v (such that v > r) with probabilities p and 1 − p, independently of the opponent’s
value. Then for every p ∈ [0, r

v

)
there exists a communication equilibrium that gives

each bidder of type v a positive payoff.27

It is possible to show that in this environment all Bayesian Nash equilibria are
inefficient in the sense that the good sometimes remains unsold even though there is
a bidder with value above the reserve price. This is because at least one bidder with
value above the reserve price submits a null bid with positive probability.28 However,

26 Here is a sketch of the argument. If following every message the posterior probability that bidder 1
is of type 0 is not higher than r , then after every message either type of bidder 1 gets zero payoff in the
continuation Bayesian Nash equilibrium. Then the prior belief p1 must also be not higher than r , and hence
the Bayesian Nash equilibrium payoffs of the game without communication are the same. If the posterior
beliefs following some messages are above r , then it is optimal for bidder 1 of type 1 to send messages that
induce the highest possible belief that bidder 1’s type is 0. However, since the equilibrium posterior beliefs
must reflect the strategy of bidder 1, the highest posterior belief cannot be greater than the prior p1. Hence,
the posterior beliefs after every message must be equal to the prior, which implies payoff equivalence with
the Bayesian Nash equilibrium of the game without communication.
27 It can be shown that an analogous result holds for the case when p ∈ [ rv , 1

]
and r is sufficiently high.

The proof is long, and thus not included in the paper.
28 The inefficiency of Bayesian Nash equilibrium is easy to observe when p ≈ 0 and r ≈ v. Efficiency
requires that each bidder with value v submits an active bid, and thus the sum of the ex ante expected bids
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the constructed communication equilibrium is efficient. If only one bidder has a value
above the reserve price, then this bidder submits an active bid, and thus gets the good,
with probability one; if both bidders have values above the reserve price, then an active
bid is submitted by at least one bidder.

Such a construction clearly involves some sharing of information about the values
between the bidders. However, to provide the right incentives it is also important
to maintain enough uncertainty about the opponents’ values. For example, if it was
known that the bidders’ reports are revealed to their opponents with high probability,
then it is possible to show that a bidder of type v has a profitable deviation. The idea
is similar to that in Example 3: reporting type 0 induces the opponent to bid at the
reserve price, and thus it is profitable to report type 0 and then bid slightly above the
reserve price. To make such a deviation unprofitable it is necessary that the bidders
of type v bid aggressively enough when the opponent has reported type 0, and this is
achieved through maintaining sufficient uncertainty about the opponent’s type.

4.2 Three or more bidders

Here we continue to work with the symmetric independent case when each bidder’s
valuation can be either 0 or v. The Bayesian Nash equilibrium payoffs when there are
three or more bidders are described next.

Proposition 8 Suppose there are n ≥ 3 bidders and r ≥ 0. Each bidder’s value is 0
or v (such that v > r) with probabilities p and 1− p, independently of the opponents’
values. In every Bayesian Nash equilibrium type 0 of each bidder gets a payoff of zero,
type v of each bidder gets a payoff of max

{
pn−1v − r , 0

}
.

Note that there can be no communication equilibrium such that some bidder gets
a payoff below his Bayesian Nash equilibrium payoff. Bidding 0 guarantees a payoff
of (at least) zero; bidding the reserve price r leads to winning whenever all opponents
have zero valuations, and thus guarantees a payoff of (at least) pn−1v − r .

The next result demonstrates that there exist communication equilibria such that
each bidder gets a payoff higher than in the Bayesian Nash equilibrium. We focus
on the case of no reserve price, but the construction can be extended to the case of a
positive reserve price as well.

Proposition 9 In the environment described in Proposition 8, if r = 0, then for p
sufficiently small there exists a communication equilibrium such that each bidder of
type v gets a payoff that is twice as large as in the Bayesian Nash equilibrium.

Footnote 28 continued
must be at least 2 (1 − p) r ≈ 2v. However, the bidders’ gross ex ante payoff is only v

(
1 − p2

)
≈ v,

which gives an impossibilty.
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5 Discussion

We have shown that in the complete information case with two bidders all correlated
equilibria are payoff equivalent to the Nash equilibrium if there is no reserve price, or
if it is commonly known that one bidder has a strictly higher value. By the revelation
principle for games with communication this implies that the Nash equilibrium pre-
dictions in those settings are robust to pre-play communication between the bidders.
Specifically, the bidders’ expected payoffs and expected payments are unaffected by
allowing them to communicate with each other prior to the auction using any medi-
ated or unmediated communication protocol.29 We have also shown that in the case of
two bidders with independent private values and no reserve price all communication
equilibria are payoff equivalent to the Bayesian Nash equilibrium. Hence the Bayesian
Nash equilibrium predictions in this case are also robust to pre-play communication
between the players. It would be interesting to see if the result can be extended beyond
the case of independent private values.

Recently Hwang and Rey-Bellet (2020) used a payoff transformation similar to (1)
in Proposition 2 to show that other models of contests and related games are strate-
gically equivalent to particular zero-sum games.30 These results in particular imply
payoff equivalence of Nash and correlated equilibria in such games.31 Haimanko
(2022) used a similar approach for common value contests with incomplete informa-
tion.

We have demonstrated that in the complete information settings with three or more
symmetric bidders, and two symmetric bidders and a positive reserve price, there
may exist correlated equilibria that are not payoff equivalent to the Nash equilibrium.
Specifically, the bidders’ payoffs can be higher than in the Nash equilibrium, but never
lower. This suggests that allowing the bidders to communicate before bidding may
improve their payoffs, and, in case the bids represent socially unproductive expenses,
communication may be unambiguously good for the society. On the other hand, if the
bids represent transfers to the seller or some socially productive activities, then one
should take into account that though communicationmay improve the bidders’ payoffs
and efficiency of the allocation, it may also result in less intense bidding. Similarly, we
have demonstrated for particular independent private value settings with binary types
that theremayexist communication equilibria that providehigher payoffs to the bidders
in comparison with the Bayesian Nash equilibrium. It would be interesting obtain a
full characterization of correlated equilibria in the complete information environments
and communication equilibria in the incomplete information environments.

29 Another implication is that the Nash equilibrium prediction is robust to the bidders’ having arbitrary
correlated beliefs about payoff-irrelevant states of the world, as long as these beliefs are consistent with the
common prior (Aumann 1974).
30 Such models include all-pay auctions with general cost functions (Siegel 2009) as well as models
of contests where the determination of the winner stochastically depends on the amount of resources
committed by the participants, i.e. rent-seeking contests and models of conflict (Tullock 1980; Hirshleifer
1989), tournaments between workers (Lazear and Rosen 1981), R&D contests (Baye and Hoppe 2003), etc.
31 Relatedly, Einy et al. (2022) identified classes of games with a unique correlated equilibrium which
coincides with the unique Nash equilibrium.
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The correlated and communication equilibria describe all possible outcomes that
can be potentially achieved with the help of communication in a self-enforcing way. It
is important to knowhowexactly communication between the bidders can be organized
if onewants to implement the outcome of some particular correlated or communication
equilibrium. One natural approach is to find an extra player who is able to play the role
of amediator as described in Sect. 2. Themediator should be able to communicate with
each bidder privately, or, alternatively, he should be able to communicate with each
bidder by encrypted messages according to a previously agreed upon code (Lehrer
and Sorin 1997). The mediator should also be able to commit to his communication
strategy, but if this is impossible, then in some situations “strategic mediators” can be
used as well.32

It may also be interesting to know if the outcomes of the correlated and communi-
cation equilibria can be implemented with a help of some unmediated communication
procedure between the bidders.33 Let us briefly discuss the case of two bidders. In
our constructed correlated equilibria it is essential that the bidders remain uncertain
about the strategies that are recommended to their opponents, and in the communica-
tion equilibria it is also important that the bidders are uncertain about the values of the
opponents. Thus it is unlikely that the outcomes of these correlated and communication
equilibria can be implemented by some simple unmediated communication procedure,
whereby the bidders directly communicate with each other, because such communi-
cation cannot generate the desired correlated beliefs.34 This implies that successful
unmediated communicationmust use correlation devices and/or noisy communication
channels.

To illustrate, here is one of many possible ways to implement the outcome of the
correlated equilibrium in Example 1. Bidder 2 with probability r announces to bidder
1 that he will bid 0, and with probability 1− r that he will bid above r , and then bids
in the auction according to his announcement. The announcement is made in a foreign
language such that bidder 1 is able to understand it with probability r , and the language
ability of bidder 1 is known only to him. If bidder 1 understands the announcement
of bidder 2, then he optimally responds to it, i.e. bids r if bidder 2 says he will bid 0,
and bids 0 if bidder 2 says he will bid above r . If bidder 1 does not understand the
announcement of bidder 2, he bids above r .35

32 For example, Ivanov (2010) investigates how strategic mediators can be used in sender-receiver games.
33 One can use the existing results on implementation of correlated and communication equilibria without
a mediator for general games. See Forges (2009) for a survey. The constructions in these papers are for
finite sets of actions, but they can be adapted to implement the correlated and communication equilibria
constructed here.
34 It also seems unlikely that there may exist other interesting correlated and communication equilibria that
can be implemented by direct unnmediated communication before the all-pay auction. In the environment
with complete information such pre-play communication only achieves payoffs that are in the convex hull
of the Nash equilibrium payoffs of the game without communication (Forges 1990). We conjecture that it
is impossible to improve upon the Bayesian Nash equilibria using only such pre-play communication in the
all-pay auction with incomplete information as well.
35 Blume and Board (2013) introduced the idea that instead of communication via a noisy communication
channel it is possible to use direct communication when there is uncertainty about the ability of the players
to understand some messages.
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6 Appendix

6.1 Proofs of Section 3

Proof of Proposition 3 Denote ui = 1
v−r Ui for i = 1, 2, and fix (u1, u2) ∈ R

2+ such
that v2ui + r2u j ≤ r2. The bidders are given recommendations according to the
following probability distribution, where “bid above r” means “bid uniformly on
(r , v]”.36

1’s bid \ 2’s bid bid 0 bid r bid above r

bid 0 0 u2
r

v+r (1 − u1 − u2)

bid r u1 0 0
bid above r r

v+r (1 − u1 − u2) 0 v−r
v+r (1 − u1 − u2)

Suppose bidder 1 is suggested to bid 0 and bids b ∈ (r , v] instead.37 Then his
payoff is

(
u2

u2 + r
v+r (1 − u1 − u2)

+
r

v+r (1 − u1 − u2)

u2 + r
v+r (1 − u1 − u2)

(
b − r

v − r

))

v − b

= r2u1 + v2u2 − r2
(
v2 − r2

) (
u2 + r

v+r (1 − u1 − u2)
) (v − b) ≤ 0

where the inequality follows from r2u1 + v2u2 ≤ r2. If bidder 1 is suggested to bid r ,
then it is clearly optimal to comply, since the opponent bids 0 in such case. If bidder
1 is suggested to bid above r , then he is indifferent between all bids since the payoff
from bidding b ∈ [r , v] is

(
r

v
+
(
1 − r

v

)(b − r

v − r

))

v − b = 0

To summarize, bidder 1 gets a payoff of v − r when he is suggested to bid r , and
zero payoff otherwise. Hence, his ex ante payoff is u1 (v − r) = U1. Using a similar
argument for bidder 2, we conclude that the considered correlation rule is a correlated
equilibrium, and it achieves the desired payoffs. ��
36 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The
latter is because

u1 + u2 =
(
v2u1 + r2u2

)
+
(

r2u1 + v2u2
)

v2 + r2
≤ 2r2

v2 + r2
< 1

where the first inequality follows from v2ui + r2u j ≤ r2.
37 Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the
opponent bids r .
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Proof of Proposition 4 Fix U ∈ [0, U
]
, where U = 2(v−r)

n
(n−2)v2+(n−2)vr+2nr2

(9n−14)v2+(6n−8)vr+(n+6)r2
.

Consider the following symmetric correlation rule. First, a pair of bidders is randomly
chosen, with each pair being equally likely to be chosen. Next, the bidders receive
private bid recommendations without being told whether they have been chosen. The
bidders who are not chosen are recommended to bid 0, and the chosen bidders are
given recommendations according to the following probability distribution,where “bid
low” means “bid uniformly on

(
r , 1

2 (v + r)
]
”, and “bid high” means “bid uniformly

on
( 1
2 (v + r) , v

]
”, and where x = 1

v+r

(
v−r
4 − 3v+r

v
n
8U
)
.38

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 πl = 2r
v−r x + v+r

v−r
n
2v U πh = 2r

v−r x
bid low πl = 2r

v−r x + v+r
v−r

n
2v U πll = x + n

2v U πhl = x
bid high πh = 2r

v−r x πhl = x πhh = x

If a bidder is suggested to bid 0, then he knows that either he was not chosen
(which happens with probability n−2

n ), or that he was chosen but only his opponent
was suggested to bid above 0 (which happens with probability 2

n (πl + πh)).
If this bidder bidsb ∈ (r , 1

2 (v + r)
]
instead, then he has a chance towin only if none

of his opponents bid high. In particular, bidder i could win if (i) he was not chosen, and
one chosen bidder bids low (which happens with probability n−2

n (2πl)); (ii) he was
not chosen, and two chosen bidders bid low (which happens with probability n−2

n πll );
(iii) he was chosen, and his opponent bids low (which happens with probability 2

n πl ).
The expected payoff this bidder is then

(
n−2

n (2πl) + 2
n πl

n−2
n + 2

n (πl + πh)

(
b − r

1
2 (v + r) − r

)

+
n−2

n πll
n−2

n + 2
n (πl + πh)

(
b − r

1
2 (v + r) − r

)2
⎞

⎠ v − b (2)

Note that (2) is equal to −r if b = r . If b = 1
2 (v + r), then (2) becomes

n−2
n (2πl + πll) + 2

n πl
n−2

n + 2
n (πl + πh)

v − 1

2
(v + r) = n

8

(9n − 14) v2 + (6n − 8) vr + (n + 6) r2

(v − r) ((n − 2) v + nr + nU )
(
U − U

) ≤ 0 (3)

38 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The
latter is because

v − r

4
− 3v + r

v

n

8
U ≥ v − r

4
− 3v + r

v

n

8
U = (v − r)2 (v + r) ((3n − 4) v + nr)

2v
(
(9n − 14) v2 + (6n − 8) vr + (n + 6) r2

) ≥ 0

where the equality is by definition of U .
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where the inequality holds since U ≤ U . Since (2) is convex in b, this implies that it
is nonpositive for every b ∈ [r , 1

2 (v + r)
]
.

If this bidder bids b ∈ ( 12 (v + r) , v
]
instead, then he wins for sure if none of his

opponents bid high, and has a chance to win otherwise. In particular, bidder i wins
for sure if (i) he was not chosen, and none of the chosen bidders bid high (which
happens with probability n−2

n (2πl + πll)); (ii) he was chosen, and his opponent does
not bid high (which happens with probability 2

n πl ). Also bidder i could win if (i) he
was not chosen, and one chosen bidder bids high (which happens with probability
n−2

n (2πh + 2πhl)); (ii) he was not chosen, and two chosen bidders bid high (which
happens with probability n−2

n πhh); (iii) he was chosen, and his opponent bids high
(which happens with probability 2

n πh). The expected payoff of this bidder is then

(
n−2

n (2πl + πll) + 2
n πl

n−2
n + 2

n (πl + πh)
+

n−2
n (2πh + 2πhl) + 2

n πh
n−2

n + 2
n (πl + πh)

(
b − 1

2 (v + r)

v − 1
2 (v + r)

)

+
n−2

n πhh
n−2

n + 2
n (πl + πh)

(
b − 1

2 (v + r)

v − 1
2 (v + r)

)2
⎞

⎠ v − b (4)

Note that (4) is equal to (3) if b = 1
2 (v + r), and (4) is equal to zero if b = v. Since

(4) is convex in b, this implies that it is nonpositive for every b ∈ ( 12 (v + r) , v
]
.

If a bidder is suggested to bid low, then he knows that he is chosen, and faces
exactly one chosen opponent. This opponent bids 0, low, or high with probabilities

πl
πl+πll+πhl

, πll
πl+πll+πhl

, and πhl
πl+πll+πhl

, respectively. The expected payoff of this bidder

from bidding any b ∈ (r , 1
2 (v + r)

]
is

(
πl

πl + πll + πhl
+ πll

πl + πll + πhl

(
b − r

1
2 (v + r) − r

))

v − b = U
2
n (πl + πll + πhl)

≥ 0

If he bids b ∈ ( 12 (v + r) , v
]
instead, then his payoff is

(
πl + πll

πl + πll + πhl
+ πhl

πl + πll + πhl

(
b − 1

2 (v + r)

v − 1
2 (v + r)

))

v − b

= U
2
n (πl + πll + πhl)

2 (v − b)

v − r
<

U
2
n (πl + πll + πhl)

If a bidder is suggested to bid high, then he knows that he is chosen, and faces
exactly one chosen opponent. This opponent bids 0, low, or high with probabilities

πh
πh+πhl+πhh

, πhl
πh+πhl+πhh

, and πhh
πh+πhl+πhh

, respectively. The expected payoff of this
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bidder from bidding any b ∈ ( 12 (v + r) , 1
2v
]
is

(
πh + πhl

πh + πhl + πhh
+ πhh

πh + πhl + πhh

(
b − 1

2 (v + r)

v − 1
2 (v + r)

))

v − b

=
(

v + r

2v
+ v − r

v

(
b − 1

2 (v + r)

v − r

))

v − b = 0.

If he bids b ∈ (r , 1
2 (v + r)

]
instead, then his payoff is

(
πh

πh + πhl + πhh
+ πhl

πh + πhl + πhh

(
b − r

1
2 (v + r) − r

))

v − b

=
(

r

v
+ v − r

v

(
b − r

v − r

))

v − b = 0

Each bidder gets a payoff of U
2
n (πl+πll+πhl )

when he is suggested to bid low, and zero

payoff otherwise. Hence, his ex ante payoff is U . Thus the considered correlation rule
is a correlated equilibrium, and it achieves the desired payoffs. ��

6.2 Proofs of Section 4

Proof of Proposition 5 (ii) In every Bayesian Nash equilibrium, type 0 of each bidder
bids 0 and gets a zero payoff. Let us represent the equilibrium strategy of bidder i
of type v as a distribution function Gi : {0} ∪ [r ,∞) → [0, 1], let bi and bi be the
infimum and the supremum of the support of his equilibrium bids, and let Ui ≥ 0 be
his equilibrium payoff.

Note that Ui ≤ v − bi . Also note that bidder j of type v can secure a payoff
arbitrarily close to v − bi by bidding slightly above bi . Thus U j ≥ v − bi . Reversing
the roles of i and j , and rearranging, we get Ui = U j = U .

Next, note that bidder i of type v can secure a payoff arbitrarily close to p jv −
r by bidding slightly above r , and thus winning when the opponent is of type 0.
Hence, U ≥ max {p1v − r , p2v − r , 0}. If this inequality is strict, then neither bidder
of type v bids 0 with positive probability, and thus bi , b j ≥ r . Moreover, U >

max {p1v − r , p2v − r , 0} implies that each bidder of type v must be winning with
positive probability against the opponent of type v. Then bi < b j is impossible,
since bidder i who bids below b j always loses against the opponent of type v. But
bi = b j = b is impossible either: the requirement of winning with positive probability
against the opponent of type v implies that both bidders bid b with positive probability,
which cannot happen in equilibrium since each bidder could profitably deviate to a
slightly higher bid. Thus U = max {p1v − r , p2v − r , 0}.

Let p1 ≤ p2. It is straightforward to check that the following is a Bayesian
Nash equilibrium. Types 0 of both bidders bid 0. Type v of bidder 1 bids 0 and
r with probabilities min{r−p2v,0}

(1−p1)v
and p2−p1

1−p1
, respectively, and bids uniformly on
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(r ,min {(1 − p2) v + r , v}] otherwise; type v of bidder 2 bids 0 with probability
min{r−p2v,0}

(1−p2)v
, and bids uniformly on (r ,min {(1 − p2) v + r , v}] otherwise. ��

Proof of Proposition 6 Denote by U∗
i (vi ) the interim expected payoff of player i of

type vi in the BayesianNash equilibrium
(
μ∗
1, μ

∗
2

)
, and byUi (vi ) the interim expected

payoff of player i of type vi in the communication equilibrium μ. Let μi (·|vi ) be the
marginal probability measure of μ on Ai conditional on vi (defined in Sect. 2).

By the definition of Bayesian Nash equilibrium, for every i and Pi -a.e. vi , it is
unprofitable to deviate to any strategy μ̃i (·|vi ):

U∗
i (vi ) = vi

∫

Tj

(∫

A j

∫

Ai

ρi (b) μ∗
i (dbi |vi )μ

∗
j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

biμ
∗
i (dbi |vi )

≥ vi

∫

Tj

(∫

A j

∫

Ai

ρi (b) μ̃i (dbi |vi )μ
∗
j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

bi μ̃i (dbi |vi ) (5)

By the definition of communication equilibrium, for every i and Pi -a.e. vi , it is
unprofitable to deviate to the following strategy: first, randomize over the type reports
according to Pi , and then, regardless of the mediator’s recommendation, choose bids
according to some bidding strategy μ̃i (·|vi ):

Ui (vi ) = vi

∫

Tj

(∫

A
ρi (b) μ(db|vi , v j )

)

Pj
(
dv j
)−
∫

Ai

biμi (dbi |vi )

≥ vi

∫

Tj

(∫

A

(∫

Ai

ρi
(
b̂i , b j
)
μ̃i (db̂i |vi )

)∫

Tj

μ(db|̂vi , v j )d Pi (d v̂i )

)

Pj
(
dv j
)

−
∫

Ai

b̂i μ̃i (db̂i |vi )

= vi

∫

Tj

(∫

A j

∫

Ai

ρi
(
b̂i , b j
)
μ̃i (db̂i |vi )μ j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

b̂i μ̃i (db̂i |vi )

(6)

For every i and vi �= 0, such that both (5) and (6) hold, perform the following
operations. Take (5) with μ̃i = μi and (6) with μ̃i = μ∗

i , add the two resulting
inequalities, and divide by vi . Then for every i and Pi -a.e. vi we get

∫

Tj

(∫

A j

∫

Ai

ρi (b) μ∗
i (dbi |vi )μ

∗
j (db j |v j ) +

∫

A
ρi (b) μ(db|vi , v j )

)

Pj
(
dv j
)

≥
∫

Tj

(∫

A j

∫

Ai

ρi (b) μi (dbi |vi )μ
∗
j (db j |v j ) +

∫

A j

∫

Ai

ρi (b) μ∗
i (dbi |vi )μ j (db j |v j )

)

Pj
(
dv j
)

(7)

Next, integrate (7) with respect to Pi over the set of types of bidder i for which
inequality (7) holds. Note that the resulting inequality continues to hold even if we
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integrate over Ti because (7) is satisfied for Pi -a.e. vi , and because we have assumed
that Pi ({0}) = 0. Sum up the resulting inequalities over i :

∫

T

⎛

⎝

∫

A j

∫

Ai

∑

k=1,2

ρk (b) μ∗
i (dbi |vi )μ

∗
j (db j |v j ) +

∫

A

∑

k=1,2

ρk (b) μ(db|vi , v j )

⎞

⎠ P (dv)

≥
∫

T

⎛

⎝

∫

A j

∫

Ai

∑

k=1,2

ρk (b) μi (dbi |vi )μ
∗
j (db j |v j ) +

∫

A j

∫

Ai

∑

k=1,2

ρk (b) μ∗
i (dbi |vi )μ j (db j |v j )

⎞

⎠ P (dv)

(8)

Since
∑

k=1,2 ρk (b) = 1 for every b, inequality (8) holds as an equality. This implies
that the following inequalities hold as equalities as well for Pi -a.e. vi : inequality (5)
when μ̃i = μi , and inequality (6) when μ̃i = μ∗

i .
Hence, for every i , Pi -a.e. vi , the following is true for any μ̃i (·|vi ):

U∗
i (vi ) = vi

∫

Tj

(∫

A j

∫

Ai

ρi (b) μi (dbi |vi )μ
∗
j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

bi μi (dbi |vi )

≥ vi

∫

Tj

(∫

A j

∫

Ai

ρi (b) μ̃i (dbi |vi )μ
∗
j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

bi μ̃i (dbi |vi )

and

Ui (vi ) = vi

∫

Tj

(∫

A j

∫

Ai

ρi
(
bi , b j
)
μ∗

i (dbi |vi )μ j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

bi μ
∗
i (dbi |vi )

≥ vi

∫

Tj

(∫

A j

∫

Ai

ρi
(
bi , b j
)
μ̃i (dbi |vi )μ j (db j |v j )

)

Pj
(
dv j
)−
∫

Ai

bi μ̃i (dbi |vi )

This implies that
(
μ∗

i , μ j
)
is a Bayesian Nash equilibrium. In this equilibrium

bidder i of type vi gets payoff Ui (vi ), and bidder j of type v j gets payoff U∗
j

(
v j
)
.

Since by assumption the Bayesian Nash equilibrium is unique, for every i we have
μi = μ∗

i , and thus U∗
i (vi ) = Ui (vi ) for every Pi -a.e. vi .39 ��

Proof of Proposition 7 We show that for p ∈ [0, r
v

)
there exists a communication

equilibrium such that each bidder of type v gets a payoff of
(
r2−p2v2

)
(v−r)

v2+r2−2pv2
. Consider

the following symmetric communication rule. If a bidder reports type 0, then he is
suggested to bid 0. If a bidder reports type v and his opponent reports type 0, then this
bidder is suggested to bid r or “bid above r” (which means “bid uniformly on (r , v]”),
with probabilities π̂ = (r−pv)(v+r)

v2+r2−2pv2
and 1 − π̂ , respectively. If both bidders report

type v, then they are given recommendations according to the following probability

39 If there are multiple Bayesian Nash equilibria, then every communication equilibrium is interim payoff
equivalent to some Bayesian Nash equilibrium.We do not include this observation in Proposition 6 because
we are not aware of any examples of multiple Bayesian Nash equilibria in this setting.
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distribution.40

1’s bid \ 2’s bid bid 0 bid r bid above r

bid 0 0 πr = (r−pv)r
v2+r2−2pv2

πh = (r−pv)(v−r)

v2+r2−2pv2

bid r πr = (r−pv)r
v2+r2−2pv2

0 0

bid above r πh = (r−pv)(v−r)

v2+r2−2pv2
0 πhh = (v−r)2

v2+r2−2pv2

We need to check the incentives to tell the truth and to comply with the recommen-
dations only for the bidders of type v, since the bidders of type 0 have no incentive to
lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0, then he knows that
his opponent must be of type v and bids r or above r , with probabilities πr

πr +πh
and

πh
πr +πh

, respectively. If this bidder bids b ∈ (r , v] instead, then his payoff is41

(
πr

πr + πh
+ πh

πr + πh

(
b − r

v − r

))

v − b =
(

r

v
+ v − r

v

(
b − r

v − r

))

v − b = 0

If a bidder of type v has reported v and is suggested to bid r , then it is clearly
optimal to comply, since the opponent bids 0, regardless of the type, in such case.

If a bidder of type v has reported v and is suggested to bid above r , then he knows
that either his opponent is of type 0 and thus bids 0, or his opponent is of type v and
bids 0 or high, with probabilities p(1−π̂)

p(1−π̂)+(1−p)(πh+πhh)
, (1−p)πh

p(1−π̂)+(1−p)(πh+πhh)
, and

(1−p)πhh
p(1−π̂)+(1−p)(πh+πhh)

, respectively. The expected payoff of this bidder from bidding
any b ∈ [r , v] is

(
p (1 − π̂) + (1 − p) πh

p (1 − π̂) + (1 − p) (πh + πhh)
+ (1 − p) πhh

p (1 − π̂) + (1 − p) (πh + πhh)

(
b − r

v − r

))

v − b

=
(

r

v
+ v − r

v

(
b − r

v − r

))

v − b = 0

To summarize, if a bidder of type v truthfully reports his type and follows the
recommendations, then he gets a payoff of v − r when he is suggested to bid r ,
and zero payoff otherwise. Hence, his ex ante payoff is (pπ̂ + (1 − p) πr ) (v − r) =
(
r2−p2v2

)
(v−r)

v2+r2−2pv2
.

If a bidder of type v has reported 0, then he is suggested to bid 0. He knows that
either his opponent is of type 0 and thus bids 0, or his opponent is of type v and bids r
or above r , with probabilities p, (1 − p) π̂ , and (1 − p) (1 − π̂), respectively. If this

40 It is straightforward to verify that π̂ ∈ [0, 1] and that the entries in table: (i) sum up to one; and (ii) are
nonnegative (since r > pv).
41 Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the
opponent bids r .
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bidder bids b ∈ (r , v], then his payoff is

(

(p + (1 − p) π̂) + (1 − p) (1 − π̂)

(
b − r

v − r

))

v − b

≤ max {(p + (1 − p) π̂) v − r , 0} =
(
r2 − p2v2

)
(v − r)

v2 + r2 − 2pv2

where the inequality follows from the fact that payoff is a linear function of b and is
thus maximized either at b = r or at b = v.

Thus the considered communication rule is a communication equilibrium, and it
achieves the desired payoffs. ��

Proof of Proposition 8 The proof is similar to the proof of part (ii) of Proposition 5. In
every Bayesian Nash equilibrium, type 0 of each bidder bids 0 and gets a zero payoff.
Let the equilibrium strategy of bidder i of type v be represented by distribution function
Gi : {0}∪ [r ,∞) → [0, 1], bi and bi be the infimum and the supremum of the support
of his equilibrium bids, and Ui ≥ 0 be his equilibrium payoff.

Note that Ui ≤ ∏k �=i

(
p + (1 − p) Gk

(
bi
))

v − bi . Also note that bidder j of

type v can secure a payoff arbitrarily close to
∏

k �=i, j

(
p + (1 − p) Gk

(
bi
))

v −bi by

bidding slightly above bi . Thus U j ≥ Ui . Since this is true for every pair of i and j ,
we have Ui = U for every i .

Next, note that bidder i of type v can secure a payoff arbitrarily close to pn−1v − r
by bidding slightly above r , and thus winning when the opponent is of type 0. Hence,
U ≥ max

{
pn−1v − r , 0

}
. If this inequality is strict, then neither bidder bids 0 with

positive probability, and thus bi ≥ r for every i . Moreover, U > max
{

pn−1v − r , 0
}

implies that each bidder of type v must be winning with positive probability against
some opponent of type v. Then it is impossible to have bi < b = min j �=i b j , since
bidder i who bids below b always loses against the opponents of type v. But bi = b
is impossible either: the requirement of winning with positive probability against
some opponent of type v implies that the bidders who bid b must do so with positive
probability, which cannot happen in equilibrium since each bidder could profitably
deviate to a slightly higher bid. Thus U = max

{
pn−1v − r , 0

}
.

It is straightforward to check that the following is a Bayesian Nash equi-
librium. Type 0 of each bidder bids 0. Type v of each bidder bids 0 with

probability x = 1
1−p

(

max

{
( r

v

) 1
n−1 − p, 0

})

, and bids according to G (b) =
1

1−p

(
(
max
{

pn−1 − r
v
, 0
}+ b

v

) 1
n−1 − p

)

on
(
r ,min
{(
1 − pn−1

)
v + r , v

}]
. ��

Proof of Proposition 9 We show for sufficiently small p > 0 there exists a communi-
cation equilibrium such that each bidder of type v gets a payoff of 2pn−1v. Consider
the following symmetric communication rule. If a bidder reports type 0, then he is
suggested to bid 0. If exactly one bidder reports v, then this bidder is suggested to“bid

low” (which means “bid uniformly on
(
0, 1

2 v
]
”). If m > 1 bidders report v, then
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a pair of bidders out of these m bidders is randomly chosen, with each pair being
equally likely to be chosen. The bidders receive private bid recommendations with-
out being told whether they have been chosen. The bidders who are not chosen are
recommended to bid 0, and the chosen bidders are given recommendations according
to the following probability distribution where “bid high” means “bid uniformly on( 1
2v, v
]
”, and where

g =
n−1∑

k=1

(n − 1)!
k! (n − 1 − k)! (1 − p)k pn−1−k

(
2

k + 1

)

= 2

(
1

n

1 − pn

1 − p
− pn−1

)

is the probability that a bidder who submitted report v was chosen and that he is not
the only one who submitted v.42

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 πl = 1
g pn−1 0

bid low πl = 1
g pn−1 πll = 1

4 + 1
g pn−1 πhl = 1

4 − 1
g pn−1

bid high 0 πhl = 1
4 − 1

g pn−1 πhh = 1
4 − 1

g pn−1

We need to check the incentives to tell the truth and to comply with the recommen-
dations only for the bidders of type v, since the bidders of type 0 have no incentive to
lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0, then he knows that
either he was not chosen (which happens with probability 1 − pn−1 − g), or that he
was chosen but only his opponent is suggested to bid above 0 (which happens with
probability gπl ).

If this bidder bids b ∈ (0, 1
2v
]
instead, then he has a chance to win only if none of

his opponents bid high. In particular, bidder i could win if (i) he was not chosen, and
one chosen bidder bids low (which happens with probability

(
1 − pn−1 − g

)
2πl ); (ii)

he was not chosen, and two chosen bidders bid low (which happens with probability(
1 − pn−1 − g

)
πll ); (iii) he was chosen, and his opponent bids low (which happens

with probability gπl ). The expected payoff of this bidder is then

⎛

⎝

(
1 − pn−1 − g

)
2πl + gπl

1 − g

(
b
1
2v

)

+
(
1 − pn−1 − g

)
πll

1 − g

(
b
1
2v

)2
⎞

⎠ v − b (9)

42 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative for p
sufficiently small (since g = 2

n when p = 0).
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Note that (9) is equal to 0 if b = 0. If b = 1
2v, then (9) becomes

((
1 − pn−1 − g

)
(2πl + πll) + gπl

1 − g

)

v − 1

2
v =
⎛

⎝

(
31−pn−1

g − 9
4

)
pn−1

1 − g
− 1

4

⎞

⎠ v

(10)

Note that (10) is equal to − 1
4v if p = 0, and that ( 10) is continuous in p. Thus for

p small enough (9) is nonpositive at b = 0 and at b = 1
2v, and it is convex in b on

(
0, 1

2v
]
, which implies that (9) is nonpositive for every b ∈ (0, 1

2v
]
.

If this bidder bids b ∈ ( 12v, v
]
instead, then hewins for sure if none of his opponents

bids high, and has a chance to win otherwise. In particular, bidder i wins for sure if
(i) he was not chosen, and none of the chosen bidders bid high (which happens with
probability

(
1 − pn−1 − g

)
(2πl + πll)); (ii) he was chosen, and his opponent does

not bid high (which happens with probability gπl ). Also bidder i could win if (i) he
was not chosen, and one chosen bidder bids high (which happens with probability(
1 − pn−1 − g

)
2πhl ); (ii) he was not chosen, and two chosen bidders bid high (which

happens with probability
(
1 − pn−1 − g

)
πhh). The expected payoff of this bidder is

then

((
1 − pn−1 − g

)
(2πl + πll) + gπl

1 − g
+
(
1 − pn−1 − g

)
2πhl

1 − g

(
b − 1

2v

1
2v

)

+
(
1 − pn−1 − g

)
πhh

1 − g

(
b − 1

2v

1
2v

)2
⎞

⎠ v − b (11)

Note that (11) is equal to (10) if b = 1
2v, and (11) is equal to zero if b = v. Thus for

p small enough ( 11) is nonpositive at b = 1
2v and at b = v, and it is convex in b on

( 1
2v, v
]
, which implies that (11) is nonpositive for every b ∈ ( 12v, v

]
.

If a bidder of type v has reported v and is suggested to bid low, then he knows that
either he faces no opponents (with probability pn−1), or that he was chosen and faces
one chosen opponent who bids 0, low, or high with probabilities gπl , gπll , and gπhl ,
respectively. The expected payoff of this bidder from bidding any b ∈ (0, 1

2v
]
is

(
pn−1 + gπl

pn−1 + g (πl + πll + πhl)
+ gπll

pn−1 + g (πl + πll + πhl)

b
1
2v

)

v − b

= 2pn−1v

2pn−1 + 1
2g

≥ 0
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If he bids b ∈ ( 12v, v
]
instead, then his payoff is

(
pn−1 + g (πl + πll)

pn−1 + g (πl + πll + πhl)
+ gπhl

pn−1 + g (πl + πll + πhl)

(
b − 1

2v

1
2v

))

v − b

= 2pn−1v

2pn−1 + 1
2g

(
v − b
1
2v

)

<
2pn−1v

2pn−1 + 1
2g

If a bidder of type v has reported v and is suggested to bid high, then he knows
that he was chosen and faces one chosen opponent who bids low or high, with equal
probabilities. Thus the expected payoff of this bidder from bidding any b ∈ (0, v] is
equal to zero.

To summarize, if a bidder of type v truthfully reports his type and follows the

recommendations, then he gets a payoff of 2pn−1v

2pn−1+ 1
2 g

when he is suggested to bid low,

and zero payoff otherwise. Hence, his ex ante payoff is 2pn−1v.
If a bidder of type v has reported 0, then he is suggested to bid 0. He

knows that he faces no active opponents with probability pn−1; one active oppo-
nent who bids low with probability (n − 1) (1 − p) pn−2 + 2dπl , where d =(
1 − pn−1 − (n − 1) (1 − p) pn−2

)
; two active opponents who both bid low, both

bid high, or one bids low and another high with probabilities dπll , dπhh , and 2dπhl ,
respectively.

If this bidder bids b ∈ (0, 1
2v
]
, then his payoff is

⎛

⎝pn−1 +
(
(n − 1) (1 − p) pn−2 + d2πl

)
(

b
1
2v

)

+ dπll

(
b
1
2v

)2
⎞

⎠ v − b (12)

Note that if b = 0, then (12) is equal to pn−1v which is smaller than the payoff from
truthtelling 2pn−1v. If b = 1

2v then (12) becomes

(
pn−1 + (n − 1) (1 − p) pn−2 + d (2πl + πll)

)
v − 1

2
v (13)

Note that (13) is equal to − 1
4v if p = 0, and that ( 13) is continuous in p. Thus for

p small enough (12) is smaller than 2pn−1v at b = 0 and at b = 1
2v, and it is convex

in b on
(
0, 1

2v
]
, which implies that (13) is smaller than the payoff from truthtelling

2pn−1v for every b ∈ (0, 1
2v
]
.
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If this bidder bids b ∈ ( 12v, v
]
, then his payoff is

⎛

⎝pn−1 + (n − 1) (1 − p) pn−2 + d (2πl + πll ) + 2dπhl

(
b − 1

2 v

1
2 v

)

+ dπhh

(
b − 1

2 v

1
2 v

)2
⎞

⎠ v − b

(14)

Note that (14) is equal to (13) if b = 1
2v, and (14) is equal to zero if b = v. Thus for

p small enough ( 14) is smaller than 2pn−1v at b = 1
2v and at b = v, and it is convex

in b on
( 1
2v, v
]
, which implies that (14) is smaller than the payoff from truthtelling

2pn−1v for every b ∈ ( 12v, v
]
.

Thus the considered communication rule is a communication equilibrium, and it
achieves the desired payoffs. ��
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