ORIGINAL PAPER

Correlated equilibria and communication equilibria in all-pay auctions

Gregory Pavlov ${ }^{1}$ (1)

Received: 23 June 2022 / Accepted: 8 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

We study cheap-talk pre-play communication in static all-pay auctions. For the complete information case of two bidders, all correlated equilibria are payoff equivalent to the Nash equilibrium if there is no reserve price, or if it is commonly known that one bidder has a strictly higher value. Similarly, for the independent private values case of two bidders with no reserve price, all communication equilibria are payoff equivalent to the Bayesian Nash equilibrium. Hence, in such environments the Nash equilibrium and the Bayesian Nash equilibrium predictions are robust to pre-play communication between the bidders. On the other hand, if there are three or more symmetric bidders, or two symmetric bidders and a positive reserve price, then with complete information there may exist correlated equilibria such that the bidders' payoffs are higher than in any Nash equilibrium, and with independent private values there may exist communication equilibria such that the bidders' payoffs are higher than in any Bayesian Nash equilibrium. In these cases, pre-play cheap talk may affect the outcomes of the game, since the bidders have an incentive to coordinate on such equilibria.

Keywords Communication • Collusion • All-pay auctions
JEL Classification C72 • D44 • D82 • D83 • L41

[^0]
1 Introduction

An all-pay auction is a model of a contest in which the participants expend resources trying to win a prize, and the prize goes to whoever spends the most. This model is important for studying various economic phenomena, especially lobbying and other rent-seeking activities (Hillman and Samet 1987; Baye et al. 1993). It is typically assumed that in the all-pay auction the bidders choose how much to bid without any prior contact with each other. Yet, in many situations it is difficult or impossible to prevent the bidders from engaging in cheap talk before the auction. Thus it is important to understand whether and how pre-play cheap-talk communication affects the outcomes of the all-pay auction.

Competition in the all-pay auction is typically intense. For example, if it is commonly known that the value of the good is the same for all bidders, then complete rent dissipation occurs in all Nash equilibria, i.e. the total expected payments of the bidders are equal to the value of the good, and each bidder gets a zero expected payoff. Thus, if pre-play communication is allowed, the bidders may want to try to coordinate their bidding in order to avoid cut-throat competition. However, because of the antagonistic nature of the all-pay auction it is unclear whether informative communication is possible. A bidder may not want to communicate his bidding intentions or privately known value truthfully to his opponents because this information could be used against him. Instead, each bidder, regardless of his value, might want to misguide his opponents into bidding less aggressively. We show that in some environments preplay communication is indeed completely powerless, and the equilibrium outcomes of the game with communication are payoff equivalent to the equilibrium outcomes of the all-pay auction without communication. Perhaps more surprisingly, we also show that there are situations when pre-play communication helps the bidders to coordinate their behavior so that the intensity of bidding is reduced, and the bidders get higher payoffs than in the all-pay auction without communication.

To study the all-pay auction with pre-play communication in environments with complete information we use the solution concept of correlated equilibrium (Aumann 1974, 1987), and in environments with incomplete information-communication equilibrium (Myerson 1982). According to the revelation principle for games with communication, which is discussed in Sect. 2, the correlated and communication equilibria describe all possible outcomes that can be potentially achieved with the help of communication in a self-enforcing way. ${ }^{1}$ In the all-pay auction models that we study there is either a unique Nash equilibrium, or all Nash equilibria result in the same payoffs for the bidders. If it happens that in a given environment all correlated (communication) equilibria are payoff equivalent to the Nash equilibrium, then we can say that the Nash equilibrium prediction is robust to pre-play communication between the bidders. However, if there exist correlated (communication) equilibria that are not

[^1]payoff equivalent to the Nash equilibrium, then pre-play communication may affect the outcomes of the game. In particular, if in such correlated (communication) equilibria the bidders get higher payoffs than in the Nash equilibrium, then they have an incentive to coordinate on the former. Different ways of organizing communication between the bidders to realize the outcomes of the correlated and communication equilibria are discussed in Sect. 5 .

In Sect. 3 we study correlated equilibria in the all-pay auction with complete information. We show that with two bidders the correlated equilibria are payoff equivalent to the Nash equilibrium when there is no reserve price, or if the bidders are asymmetric (Proposition 2). In such cases the all-pay auction is "strategically equivalent" to a particular zero-sum game, and for two-player zero-sum games the correlated and Nash equilibria are known to be payoff equivalent (Moulin and Vial 1978). It turns out that this strategic equivalence does not hold when there is a reserve price and the bidders are symmetric. ${ }^{2}$ For this case we construct correlated equilibria that are more profitable for the bidders than the Nash equilibrium (Example 1 and Proposition 3). When there are three or more symmetric bidders, such profitable correlated equilibria exist even when there is no reserve price (Example 2 and Proposition 4). The idea of the construction is to introduce some imperfect negative correlation in the distribution of the bids. Say, when one of the bidders bids aggressively, then with a certain probability his opponents are "suggested" to bid zero, and thus save the cost of their bids.

In Sect. 4 we study communication equilibria in all-pay auctions with independent private values. Similarly to the case of complete information, we show that with two bidders the communication equilibria are payoff equivalent to the unique Bayesian Nash equilibrium when there is no reserve price (Proposition 6). That is, neither self-enforcing sharing of private information, nor correlation of play is possible in this case. However, in other cases there exist communication equilibria that are more profitable for the bidders than the Bayesian Nash equilibrium. This is demonstrated in simple settings with binary values for the case of two bidders and a positive reserve price (Example 3 and Proposition 7), and for the case of three or more bidders and no reserve price (Proposition 9). The constructions involve correlating the bidders' play in a way that is similar to the correlated equilibria in Sect. 3. The bidders also share some private information, but only to a limited extent because it is important to maintain enough uncertainty about the opponents' values and play for the construction to work.

Pre-play communication in auctions and contests is typically studied in the context of collusion. For example, most of the studies of collusion in static auctions focus on a scenario in which bidders organize an explicit cartel that allows them to communicate, enforce coordinated behavior of the bidders in the auction, and facilitate exchange of side payments between the bidders. ${ }^{3}$ Bidders' collusion that is self-enforcing is for

[^2]the most part considered in the context of repeated auctions. ${ }^{4}$ In such models the enforcement of the desired bidders' behavior is provided by expectations of the future reactions of opponents.

Only a few papers study collusion in static auctions when the behavior of the bidders in the auction cannot be directly controlled. Marshall and Marx (2007, 2009), and Lopomo et al. (2011) study collusion in first-price, second-price, and ascending-bid auctions under the following scenario: the bidders make reports to a "center"; based on these reports, the center privately recommends a bid to be made by each bidder, and requires payments from the bidders. ${ }^{5}$ If we drop the possibility of exchanging side payments before the auction, then such a model of collusion is equivalent to assuming that the bidders play some particular communication equilibrium. Lopomo et al. (2011) show that in the first-price auction with discrete bids such collusion is completely ineffective: all collusive equilibria are payoff equivalent to the unique Bayesian Nash equilibrium. ${ }^{6}$ However, Marshall and Marx (2007) show that in the second-price auction such collusion works equally well as collusion in a model where the bidders behavior can be controlled by the cartel. In fact, in second-price auctions viable collusion is possible even when the bidders cannot exchange side payments, i.e. there exist communication equilibria that are different from the Bayesian Nash equilibria, and are more profitable for the bidders (Marshall and Marx 2009).

In some cases it is reasonable to assume that bidders can disclose private information about their valuations in a verifiable way. Benoit and Dubra (2006), Hernando-Veciana and Tröge (2011), and Tan (2016) study the bidders' individual decisions to disclose information in winner-pay auctions. Kovenock et al. (2015) and Szech (2011) study this problem in all-pay auctions. The relation of such an approach to our approach is discussed in Sect.4.1.

There are also many experimental studies of the effect pre-play communication in games. While we are unaware of any research that studies exactly our setting, there is some related work. For example, Harbring (2006) considers the effect of communication in a repeated all-pay auction with a cap on the maximal possible bids. Though there were only finitely many rounds, the bidders's behavior resembled collusive play in an infinitely repeated game, and the possibility of communication led to lower bids and higher payoffs. ${ }^{7}$ More generally, experimental research has revealed that pre-play communication often increases cooperation between the players beyond what is predicted by standard game-theoretic models, and this effect is attributed to a combination of norms, empathy, nonverbal cues, etc. (Camerer 2003).

The rest of the paper is organized as follows. The model and the definitions of correlated and communication equilibria are in Sect. 2. The all-pay auctions with complete information and incomplete information are studied in Sects. 3 and 4, respectively. Discussion is in Sect. 5. The proofs are relegated to the Appendix unless stated otherwise.

[^3]
2 Model

There are $n \geq 2$ bidders. Bidder i chooses a bid b_{i} from a set of possible bids A_{i}. If there is no reserve price, then $A_{i}=[0, \infty)$. If there is a reserve price $r>0$, then $A_{i}=\{0\} \cup[r, \infty)$, i.e., bidder i can either submit a "null" bid $b_{i}=0$, or an "active" bid $b_{i} \geq r .{ }^{8}$ If bidder i bids b_{i}, and the other bidders bid b_{-i}, then bidder i wins the good with probability $\rho_{i}\left(b_{i}, b_{-i}\right)$. If there is no reserve price, then

$$
\rho_{i}\left(b_{i}, b_{-i}\right)=\left\{\begin{array}{cc}
0 & \text { if } b_{i}<\max _{j \neq i} b_{j} \\
1 & \text { if } b_{i}>\max _{j \neq i} b_{j} \\
\frac{1}{\#\left\{k: b_{k}=b_{i}\right\}} & \text { if } b_{i}=\max _{j \neq i} b_{j}
\end{array}\right.
$$

If there is a reserve price $r>0$, then

$$
\rho_{i}\left(b_{i}, b_{-i}\right)=\left\{\begin{array}{cl}
0 & \text { if } b_{i}=0 \text { or }\left\{b_{i} \geq r \text { and } b_{i}<\max _{j \neq i} b_{j}\right\} \\
1 & \text { if } b_{i} \geq r \text { and } b_{i}>\max _{j \neq i} b_{j} \\
\frac{1}{\#\left\{k: b_{k}=b_{i}\right\}} & \text { if } b_{i} \geq r \text { and } b_{i}=\max _{j \neq i} b_{j}
\end{array}\right.
$$

We consider both complete and incomplete information environments.
Complete information. Bidder i has a valuation $v_{i}>0$ for the good, and the bidders' values $\left(v_{1}, \ldots, v_{n}\right)$ are commonly known. If bidder i bids b_{i}, and the other bidders bid b_{-i}, then his payoff is $u_{i}\left(b_{i}, b_{-i}\right)=v_{i} \rho_{i}\left(b_{i}, b_{-i}\right)-b_{i}$.

In the complete information case we study correlated equilibria and Nash equilibria. To define a correlated equilibrium suppose there is a neutral trustworthy mediator who makes non-binding private recommendations (possibly stochastic) to each bidder of which bid to submit. The recommendations are made according to a correlation rule μ, which is a probability measure over the set of all possible bid profiles $A=$ $\prod_{j=1}^{n} A_{j} .{ }^{9}$ Each bidder then decides which bid to submit as a function of the mediator's recommendation. Thus a pure strategy of bidder i is $\widehat{b_{i}}: A_{i} \rightarrow A_{i}$.

Definition 1 A correlation rule μ is a correlated equilibrium if each bidder finds it optimal to obey the mediator's recommendations:

$$
\int_{A} u_{i}(b) \mu(d b) \geq \int_{A} u_{i}\left(\widehat{b}_{i}\left(b_{i}\right), b_{-i}\right) \mu(d b) \quad \text { for every } i \text { and } \widehat{b}_{i}(\cdot) .
$$

The significance of correlated equilibrium for studying all-pay auctions with communication is due to the revelation principle. ${ }^{10}$ According to this principle, for any Nash equilibrium of a game that consists of some communication protocol followed by the all-pay auction, there exists an outcome equivalent correlated equilibrium of

[^4]the all-pay auction. There is no loss of generality in requiring that for each player it is optimal to obey the mediator's recommendations.

Let μ_{i} be the marginal probability measure of μ on A_{i} :

$$
\mu_{i}\left(E_{i}\right)=\int_{E_{i} \times A_{-i}} \mu(d b) \quad \text { for every } E_{i} \subseteq A_{i}
$$

A Nash equilibrium is a correlated equilibrium μ^{*} such that each bidder's behavior is independent from the actions of the opponents, i.e., μ^{*} is a product of its marginals $\prod_{j=1}^{n} \mu_{j}^{*}$. Hence, both Nash and correlated equilibria are joint plans of actions that are individually self-enforcing, but correlated equilibrium allows for additional coordination by correlating recommendations to the bidders. When we encounter a Nash equilibrium, we write it as a profile of the individual mixed actions $\left(\mu_{1}^{*}, \ldots, \mu_{n}^{*}\right)$.

Incomplete information. Bidder i privately observes own value $v_{i} \in T_{i}=\left[\underline{v}_{i}, \bar{v}_{i}\right] \subset$ \mathbb{R}_{+}. The value of bidder i is distributed according to a probability measure P_{i} on T_{i}, independently of the valuations of the other bidders. This information structure is assumed to be common knowledge. The payoff of bidder i with value v_{i}, who bids b_{i}, while the other bidders bid b_{-i}, is $u_{i}\left(b_{i}, b_{-i} ; v_{i}\right)=v_{i} \rho_{i}\left(b_{i}, b_{-i}\right)-b_{i}$. Denote $T=\prod_{j=1}^{n} T_{j}$, and let P be a product measure $\prod_{j=1}^{n} P_{j}$, and $P_{-i}=\prod_{j \neq i} P_{j}$.

In the incomplete information case we study communication equilibria and Bayesian Nash equilibria. To define a communication equilibrium suppose the bidders first privately report their values to a neutral trustworthy mediator, who then makes non-binding private recommendations (possibly stochastic) to each bidder of which bid to submit. The recommendations are made according to a communication rule μ, which is a family of probability measures $\{\mu(\cdot \mid v)\}_{v \in T}$. That is, for each profile of type reports v submitted to the mediator, $\mu(\cdot \mid v)$ is a probability measure over the set of all possible bid profiles A. Each bidder decides which type to report, and which bid to submit as a function of the mediator's recommendation. Thus a pure strategy of bidder i with value v_{i} specifies $\widehat{v}_{i} \in T_{i}$, the value to be reported, and $\widehat{b}_{i}: A_{i} \rightarrow A_{i}$, the rule for translating recommendations into bids.

Definition 2 A communication rule μ is a communication equilibrium if P_{i}-almost every type of each bidder finds it optimal to report their true type and obey the mediator's recommendations:

$$
\begin{aligned}
& \int_{T_{-i}}\left(\int_{A} u_{i}\left(b ; v_{i}\right) \mu(d b \mid v)\right) P_{-i}\left(d v_{-i}\right) \\
& \geq \int_{T_{-i}}\left(\int_{A} u_{i}\left(\widehat{b}_{i}\left(b_{i}\right), b_{-i} ; v_{i}\right) \mu\left(d b \mid \widehat{v}_{i}, v_{-i}\right)\right) P_{-i}\left(d v_{-i}\right) \\
& \text { for every } i, P_{i} \text {-a.e. } v_{i}, \text { every } \widehat{v}_{i}, \text { and } \widehat{b}_{i}(\cdot) .
\end{aligned}
$$

Similarly to the case of correlated equilibrium, the significance of communication equilibrium for studying all-pay auctions with communication in a setting with nonverfiable information is due to the revelation principle. For any Bayesian Nash equilibrium of a game that consists of some communication protocol followed by the
all-pay auction, there exists an outcome equivalent communication equilibrium of the all-pay auction. There is no loss of generality in requiring that for each player reporting their true type and obeying the mediator's recommendation is optimal.

Let $\mu_{i}\left(\cdot \mid v_{i}\right)$ be the marginal probability measure of μ on A_{i} conditional on v_{i} :

$$
\mu_{i}\left(E_{i} \mid v_{i}\right)=\int_{T_{-i}}\left(\int_{E_{i} \times A_{-i}} \mu\left(d b \mid v_{i}, v_{-i}\right)\right) P_{-i}\left(d v_{-i}\right) \quad \text { for every } E_{i} \subseteq A_{i}
$$

A Bayesian Nash equilibrium is a communication equilibrium μ^{*} such that each bidder's behavior is independent from the opponents' reports and actions, i.e., for every $v=\left(v_{1}, \ldots, v_{n}\right), \mu^{*}(\cdot \mid v)$ is a product of marginals $\prod_{j=1}^{n} \mu_{j}^{*}\left(\cdot \mid v_{j}\right)$. Thus, relative to the Bayesian Nash equilibrium, communication equilibrium allows for self-enforcing sharing of private information between the bidders, as well as for coordination via correlation of the recommended bids. When we encounter a Bayesian Nash equilibrium, we write it as a profile $\left(\mu_{1}^{*}, \ldots, \mu_{n}^{*}\right)$, where μ_{i}^{*} is $\left\{\mu_{i}^{*}\left(\cdot \mid v_{i}\right)\right\}_{v_{i} \in T_{i}}$ for every i.

3 All-pay auctions with complete information

In this section we study and compare the Nash equilibria and correlated equilibria of the all-pay auction under complete information. The Nash equilibria of this game are well understood, and we simply summarize the existing results. We are not aware, however, of any characterizations of the set of correlated equilibria of the all-pay auction.

In games with a finite number of actions the set of correlated equilibria is defined by finitely many linear inequalities: if player i has $\left|A_{i}\right|$ possible actions, then there are $\left|A_{i}\right|\left(\left|A_{i}\right|-1\right)$ obedience constraints that ensure that he has no incentive to deviate from the recommended actions. It is thus straightforward to describe the extreme points of this set and to find the set of the players' payoffs achievable by the correlated equilibria. However, if each player has a continuum of possible actions, then there is a double continuum of obedience constraints, which is difficult to work with. ${ }^{11}$ One possible approach is to discretize the action spaces and to use linear programming tools. This path is pursued, for example, in Lopomo et al. (2011) in their study of collusive schemes in the first price auction. In this paper we take a different route. For some cases we characterize correlated equilibria by exploiting a connection between the all-pay auction and a certain class of zero-sum games, and in other cases we construct correlated equilibria directly.

3.1 Two bidders

We begin with the case of two bidders. Denote the difference in the bidders' valuations by $\Delta v=v_{1}-v_{2}$, and without loss of generality assume $\Delta v \geq 0$. To avoid uninteresting

[^5]cases we assume that the valuations of both bidders are strictly above the reserve price $r \geq 0$.

Proposition 1 In a complete information environment with two bidders:
(i) If $r=0$, there is a unique Nash equilibrium. Bidder 1 bids uniformly with density $\frac{1}{v_{2}}$ on $\left[0, v_{2}\right]$; bidder 2 bids 0 with probability $\frac{\Delta v}{v_{1}}$, and bids uniformly with density $\frac{1}{v_{1}}$ on $\left[0, v_{2}\right]$ otherwise. The bidders' payoffs are $U_{1}=\Delta v, U_{2}=0$.
(ii) If $v_{1}>v_{2}>r>0$, there is a unique Nash equilibrium. Bidder 1 bids r with probability $\frac{r}{v_{2}}$, and bids uniformly with density $\frac{1}{v_{2}}$ on ($\left.r, v_{2}\right]$ otherwise; bidder 2 bids 0 with probability $\frac{\Delta v+r}{v_{1}}$, and bids uniformly with density $\frac{1}{v_{1}}$ on (r, v_{2}] otherwise. The bidders' payoffs are $U_{1}=\Delta v, U_{2}=0$.
(iii) If $v_{1}=v_{2}=v>r>0$, there is a continuum of Nash equilibria. Bidder i bids 0 and r with probabilities $\alpha \frac{r}{v}$ and $(1-\alpha) \frac{r}{v}$ (where $\left.\alpha \in[0,1]\right)$, respectively, and bids uniformly with density $\frac{1}{v}$ on ($\left.r, v\right]$ otherwise; bidder j bids 0 with probability $\frac{r}{v}$, and bids uniformly with density $\frac{1}{v}$ on ($\left.r, v\right]$ otherwise. The bidders' payoffs are $U_{1}=U_{2}=0$.

Proof Part (i) follows from Proposition 2 in Hillman and Riley (1989), part (ii) from Proposition 1 in Bertoletti (2016), and part (iii) from Proposition 3 in Siegel (2014).

The Nash equilibria of the complete information all-pay auctions exhibit "rent dissipation". The bidder with the lower valuation gets a zero payoff, while the bidder with the higher valuation gets a payoff equal to the difference in the valuations. In the case of symmetric bidders the rents are fully dissipated: the expected total payment of the bidders is equal to the value of the good, and each bidder gets a zero payoff.

In general the set of correlated equilibrium payoffs is at least as large as the convex hull of the Nash equilibrium payoffs: the players can use a public randomization device (or replicate it by a jointly controlled lottery) to coordinate on different Nash equilibria with different probabilities. ${ }^{12}$ In the all-pay auction, however, this observation is not useful, because either the Nash equilibrium is unique, or all Nash equilibria yield the same payoffs for the bidders.

It is known that the sets of correlated equilibrium payoffs and Nash equilibrium payoffs coincide in two-player zero-sum games (Rosenthal 1974). Regardless of whether we consider Nash or correlated equilibrium, each player has a strategy that guarantees him an expected payoff at least as large as his value of the game. Hence, by the minmax theorem, the players' expected payoffs must be equal to their respective values under either solution concept. While the all-pay auction is not a zero-sum game, in some

[^6]cases it turns out to be "strategically equivalent" to a particular zero-sum game (in a sense of Moulin and Vial 1978). The next result takes advantage of this observation and shows that the bidders' correlated equilibrium payoffs are the same as under Nash equilibrium. ${ }^{13}$

Proposition 2 In a complete information environment with two bidders, such that $r=0$ or $v_{1}>v_{2}$, every correlated equilibrium is payoff equivalent to the Nash equilibrium.

Proof Consider an auxiliary game with the same players and the same action spaces as in the all-pay auction, and with the payoffs derived from the all-pay auction payoffs for every $\left(b_{i}, b_{j}\right) \in A$ as follows:

$$
\begin{equation*}
w_{i}\left(b_{i}, b_{j}\right)=\frac{1}{v_{i}} u_{i}\left(b_{i}, b_{j}\right)+\frac{1}{v_{j}} b_{j}-\frac{1}{2}=\rho_{i}\left(b_{i}, b_{j}\right)-\frac{1}{v_{i}} b_{i}+\frac{1}{v_{j}} b_{j}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Note that $\frac{1}{v_{i}}$ is strictly positive and $\frac{1}{v_{j}} b_{j}-\frac{1}{2}$ is independent of b_{i}. This implies that the best response of each bidder in the auxiliary game is the same as in the all-pay auction, and thus the two games have the same Nash equilibria and the same correlated equilibria.

Next we show that the auxiliary game is zero-sum when $r=0$ or $v_{1}>v_{2}$. If $r=0$, then $\sum_{j=1}^{2} \rho_{j}(b)=1$ for every $b \in A$, and thus $\sum_{j=1}^{2} w_{j}(b)=\sum_{j=1}^{2} \rho_{j}(b)-1=0$ for every $b \in A$. If $r>0$, then $\sum_{j=1}^{2} \rho_{j}(b)=1$ for every b, except for $b=(0,0)$. Note, however, that bid 0 is not rationalizable for bidder 1 when $v_{1}>v_{2}$. This is because no rational bidder bids above his value, and thus bidder 1 strictly prefers to bid slightly above v_{2} to bidding 0 . Hence, although the auxiliary game is not zero-sum, it can be turned into a zero-sum game by removing bid 0 for bidder 1 . This operation will not disturb the Nash equilibria or correlated equilibria because bidding 0 is not rationalizable for player 1 , and is thus not played in either equilibrium.

We will use the following two properties of the zero-sum games: (i) the players' expected payoffs from any correlated equilibrium and from any Nash equilibrium of a zero-sum game are equal to their respective values of the game; (ii) if μ is a correlated equilibrium of a zero-sum game, then the pair of its marginals $\left(\mu_{1}, \mu_{2}\right)$ is a Nash equilibrium. These properties have been established for finite games (Lemma 1 and Corollary 1 in Rosenthal 1974), but it is straightforward to show that they also hold for zero-sum games with infinite strategy sets which have a Nash equilibrium.

Let $\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$ be the Nash equilibrium strategy profile, and $\left(W_{1}^{*}, W_{2}^{*}\right)$ be the Nash equilibrium bidders' payoffs in the auxiliary zero-sum game. This Nash equilibrium is unique when $r=0$ or $v_{1}>v_{2}$ (Proposition 1). Then the expected payoff of player

[^7]i from any correlated equilibrium μ in the all-pay auction is
\[

$$
\begin{aligned}
\int_{A} u_{i}(b) \mu(d b) & =v_{i}\left(\int_{A} w_{i}(b) \mu(d b)-\frac{1}{v_{j}} \int_{A} b_{j} \mu(d b)+\frac{1}{2}\right) \\
& =v_{i}\left(W_{i}^{*}-\frac{1}{v_{j}} \int_{A_{j}} b_{j} \mu_{j}^{*}\left(d b_{j}\right)+\frac{1}{2}\right)
\end{aligned}
$$
\]

where the first equality uses the definition of $w_{i}(\cdot)$ in (1); the second equality is true because $\int_{A} w_{i}(b) \mu(d b)=W_{i}^{*}$ by property (i) mentioned above, $\left(\mu_{1}, \mu_{2}\right)$ is a Nash equilibrium by property (ii), and $\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$ by the uniqueness of the Nash equilibrium. Hence, every correlated equilibrium of the all-pay auction is payoff equivalent to the Nash equilibrium. ${ }^{14}$

One may conjecture that the payoff equivalence of Nash and correlated equilibria has something to do with the fact that the Nash equilibrium is unique when $r=0$ or $v_{1}>v_{2}$. While there may be some connection, the uniqueness of Nash equilibrium in general does not imply payoff equivalence of Nash and correlated equilibria. ${ }^{15}$

Lopomo et al. (2011) provide a result of a similar kind for the first-price auction with two symmetric bidders and incomplete information. They show that collusion based on bid recommendations and pre-auction side payments is completely ineffective: every such collusive scheme is payoff equivalent to the unique Nash equilibrium of the auction. This implies that in the setting of Lopomo et al. (2011) the correlated equilibria are also payoff equivalent to the unique Nash equilibrium. The first-price auction is not strategically equivalent to a zero-sum game, and the proof in Lopomo et al. (2011) seems to rely on very different ideas. ${ }^{16}$

The case when $v_{1}=v_{2}=v$ and $r>0$ is distinct. The proof of Proposition 2 cannot be extended to cover this case: though the all-pay auction can still be shown to be strategically equivalent to the auxiliary game, this game is no longer a zero-sum game because the bid profile $\left(b_{1}, b_{2}\right)=(0,0)$ cannot be ruled out. (Indeed, in some Nash equilibria both bidders submit null bids with positive probability.) Next, we show that in this case there exist correlated equilibria that are not payoff equivalent to the Nash equilibrium. Paradoxically, the presence of the reserve price may help the bidders to avoid complete rent dissipation and thus be to the bidders' advantage.

Example 1 Let $v_{1}=v_{2}=1$, and $r \in(0,1)$. The bidders are given recommendations according to the following probability distribution, where "bid above r " means "bid

[^8]uniformly on $(r, 1]$ ":

1's bid \backslash 2's bid	bid 0	bid above r
bid 0	0	$r(1-r)$
bid r	r^{2}	0
bid above r	$(1-r) r$	$(1-r)^{2}$

If bidder 1 is suggested to bid 0 , then he knows that the opponent bids aggressively, and thus he is content to submit a null bid. If bidder 1 is suggested to bid r, then he knows that the opponent bids 0 , and thus his best response is to bid r. If bidder 1 is suggested to bid above r, then his probability distribution over the opponent's bids is the same as in one of the Nash equilibria, and thus he is indifferent between all bids not higher than 1 . Whether bidder 2 is suggested to bid 0 or to bid above r, he is indifferent between all bids not higher than 1 .

Bidder 1 gets a payoff of $1-r$ when he is suggested to bid r, and a zero expected payoff otherwise. Hence, his ex ante payoff is $r^{2}(1-r)$. The expected payoff of bidder 2 is zero.

Let us compare the above correlated equilibrium with a Nash equilibrium for some $\alpha \in[0,1]$ (described in part (iii) of Proposition 1). Under the Nash equilibrium bid profiles $(0,0)$ and $(r, 0)$ are played with probabilities αr^{2} and $(1-\alpha) r^{2}$, respectively, while under the correlated equilibrium (0,0) is never played, and $(r, 0)$ is played with probability r^{2}. Hence, under the correlated equilibrium the probability weight is shifted away from an unfortunate event (where both bidders bid zero and no one wins the good) to a nice event (where bidder 1 wins the good at a low price r). Next, under the Nash equilibrium the event when bidder 1 bids 0 and bidder 2 bids above r takes place with probability $\alpha r(1-r)$, and the event when bidder 1 bids r and bidder 2 bids above r takes place with probability $(1-\alpha) r(1-r)$. Under the correlated equilibrium the former event takes place with probability $r(1-r)$ and the latter event does not happen. Hence, under the correlated equilibrium the probability weight is shifted away from an unprofitable event (where bidder 1's bid r is wasted because bidder 2 bids above r) to a more profitable event (where bidder 1 bids 0 instead). Thus, the correlated equilibrium results in positive profits for bidder 1 , while every Nash equilibrium features full rent dissipation.

The next result describes some other payoffs that can be achieved with correlated equilibria. ${ }^{17}$

Proposition 3 In a complete information environment with two bidders, such that $v_{i}=v$ for $i=1,2$ and $v>r>0$, for every $\left(U_{1}, U_{2}\right) \in \mathbb{R}_{+}^{2}$ such that

$$
\left\{\begin{array}{l}
U_{1}+\frac{r^{2}}{v^{2}} U_{2} \leq \frac{r^{2}(v-r)}{v^{2}} \\
\frac{r^{2}}{v^{2}} U_{1}+U_{2} \leq \frac{r^{2}(v-r)}{v^{2}}
\end{array}\right.
$$

[^9]there exists a correlated equilibrium that gives bidder i payoff U_{i}.

3.2 Three or more bidders

Here we consider the case of three or more bidders, and we restrict attention to situations where the bidders are symmetric. Suppose each bidder has a valuation v that it is strictly above the reserve price $r \geq 0$. It is known that in this case there are many Nash equilibria, in every one of them complete rent dissipation takes place, and each bidder gets a zero payoff. ${ }^{18}$

Unlike in the case of two players, a connection between the all-pay auction and a certain class of zero-sum games is not going to allow us to obtain an analog of Proposition 2. In zero-sum games with three or more players there is no minmax theorem to rely upon, and the sets of correlated equilibrium payoffs and Nash equilibrium payoffs no longer coincide. Hence, even though in the case of no reserve price it is possible to construct an auxiliary zero-sum game that is strategically equivalent to the all-pay auction, this does not imply that the correlated equilibria and Nash equilibria are payoff equivalent. Indeed, in the next example we describe a correlated equilibrium where the bidders get positive payoffs.
Example 2 Let $n=3, v=1$, and $r=0$. Consider the following symmetric correlation rule. First, a pair of bidders is randomly chosen, with each pair being equally likely to be chosen. Next, the bidders receive private bid recommendations without being told whether they have been chosen. The bidder who is not chosen is recommended to bid 0 , and the chosen bidders are given recommendations according to the following probability distribution, where "bid low" means "bid uniformly on ($0, \frac{1}{2}$]", and "bid high" means "bid uniformly on $\left(\frac{1}{2}, 1\right]$ ":

i 's bid $\backslash j$'s bid	bid 0	bid low	bid high
bid 0	0	$\frac{2}{26}$	0
bid low	$\frac{2}{26}$	$\frac{7}{26}$	$\frac{5}{26}$
bid high	0	$\frac{5}{26}$	$\frac{5}{26}$

If a bidder is suggested to bid high, then he knows that he competes against one chosen opponent who is equally likely to bid low or high. The probability of winning with bid $b \in[0,1]$ is equal to b, and thus the payoff from any such bid is 0 .

If a bidder is suggested to bid low, then he knows that he competes against one chosen opponent who either bids 0 , bids low, or bids high, with probabilities $\frac{1}{7}$, $\frac{1}{2}$, and $\frac{5}{14}$, respectively. The probability of winning with bid $b>0$ is equal to $\min \left\{b+\frac{1}{7}, \frac{5}{7} b+\frac{2}{7}\right\}$, and thus the payoff from any $b \in\left(0, \frac{1}{2}\right]$ is $\frac{1}{7}$, and the payoff from any $b \in\left(\frac{1}{2}, 1\right]$ is below $\frac{1}{7}$.

[^10]If a bidder is suggested to bid 0 , then he knows that either he was not chosen and thus faces two potentially active opponents, or that he was chosen but only his opponent was suggested to bid above 0 . It is possible to show that the probability of winning with bid $b>0$ is equal to $\min \left\{\frac{14}{15} b^{2}+\frac{8}{15} b, \frac{2}{3} b^{2}+\frac{1}{3}\right\}$, and thus the payoff from any $b>0$ is nonpositive.

In each case the bidder is willing to comply with the recommendation. Each chosen bidder gets an expected payoff of $\frac{1}{7}$ when he is suggested to bid low (which happens with probability $\frac{7}{13}$), and a zero expected payoff otherwise. Each pair of bidders is equally likely to be chosen, and thus each bidder's ex ante payoff is $\frac{2}{39}$.

This bid rotation correlation scheme holds together due to careful management of the amount of information revealed to each player. To see the basic idea, note first that there exists a Nash equilibrium such that two bidders bid uniformly on $(0,1]$, and the third bidder bids 0 . Second, suppose that in advance a mediator randomly chooses two bidders who are to take active roles in the above Nash equilibrium, and each bidder is privately informed of his role. Finally, suppose that with a small probability a mediator "cheats" one of the chosen bidders, and, instead of informing him that he is to take an active role, tells him to bid 0 . If the probability of such "cheating" is sufficiently small, then the bidders will still be content to comply whenever they are recommended to bid 0 . This "cheating" reduces the intensity of bidding, and thus raises the bidders' payoffs. ${ }^{19}$

The next result describes some other payoffs that can be obtained in symmetric correlated equilibria for any given reserve price r and any number of bidders $n \geq 3 .{ }^{20}$ In particular, the result implies that in the correlated equilibrium the bidders can avoid full rent dissipation. Even in the limit, as the number of bidders increases without bound, the sum of the bidders' expected payoffs does not have to go to zero (e.g., when $r=0$, in the best constructed correlated equilibrium $n U \rightarrow \frac{2}{9} v$ as $\left.n \rightarrow \infty\right)$.

Proposition 4 In a complete information environment with $n \geq 3$ symmetric bidders, such that $v_{i}=v$ for every i and $v>r \geq 0$, for every $U \in$ $\left[0, \frac{2(v-r)}{n} \frac{(n-2) v^{2}+(n-2) v r+2 n r^{2}}{(9 n-14) v^{2}+(6 n-8) v r+(n+6) r^{2}}\right]$ there exists a correlated equilibrium that gives each player payoff U.

4 All-pay auctions with incomplete information

In this section we study and compare Bayesian Nash equilibria and communication equilibria of the all-pay auction under incomplete information. The communication equilibrium solution concept is similar to the correlated equilibrium in that it allows for coordination between the players via correlation of the recommended actions. In

[^11]addition, communication equilibrium gives the players possibilities to talk about their private information. Like in the case of complete information, we would like to know under what circumstances there exist communication equilibria that are not payoff equivalent to the Bayesian Nash equilibrium, and, whenever such communication equilibria exist, we would like to understand how they work.

Characterizing communication equilibria in games with large action spaces is challenging, in much of the same way as characterizing correlated equilibria is, because one has to deal with many obedience constraints. In addition, the players must be given incentives to report their types truthfully, and one has to worry about compound deviations when a player first misreports his type and then disobeys the recommended actions. For a class of environments we manage to demonstrate payoff equivalence between Bayesian Nash equilibria and communication equilibria using an approach similar to that under complete information (Proposition 2 in Sect.3). For another class of environments we build on the results on correlated equilibria from Sect. 3 and construct communication equilibria that are distinct from Bayesian Nash equilibria.

4.1 Two bidders

First, we summarize some of the existing results on Bayesian Nash equilibria with two bidders that we will refer to in this section. ${ }^{21}$

Proposition 5 In an incomplete information environment with two bidders:
(i) Letr $=0$, bidder i 's value be continuously distributed on $[0,1]$ with density that is continuously differentiable and positive on (0,1), independently of the opponent's value. There is a unique Bayesian Nash equilibrium, this equilibrium is in pure strategies, and it is strictly monotonic.
(ii) Let $r>0$ and bidder i's value be 0 or v (such that $v>r$) with probabilities p_{i} and $1-p_{i}$, respectively, independently of the opponent's value. In every Bayesian Nash equilibrium type 0 of each bidder gets a zero payoff and type v of each bidder gets a payoff of $\max \{\bar{p} v-r, 0\}$, where $\bar{p}=\max \left\{p_{1}, p_{2}\right\}$.

Proof Part (i) follows from Theorem 1 in Amann and Leininger (1996). See the Appendix for the proof of part (ii).

Our first result on communication equilibria is about the case of no reserve price. Note that it involves rather mild restrictions on the distributions of the players valuations. Part (i) of Proposition 5 describes one set of sufficient conditions for existence of the unique Bayesian Nash equilibrium, but there are also others. ${ }^{22}$ Note that Bayesian Nash equilibrium often fails to exist in the all-pay auction with no reserve price when the bidders' values are equal to zero with positive probability, and so ruling out such distributions does not seem very restrictive.

[^12]Proposition 6 Consider an incomplete information environment with two bidders and no reserve price such that the values of the bidders are strictly positive with probability one, independently distributed, and there exists a unique Bayesian Nash equilibrium. Then every communication equilibrium is interim payoff equivalent to the Bayesian Nash equilibrium.

The idea behind the result can be understood with the help of the connection between the all-pay auction and the auxiliary zero-sum game introduced in the proof of Proposition 2. Since the payoffs of the two games are related according to Eq. (1), it is easy to see that the best responses for each type of each bidder for the two games coincide, even when there is uncertainty about the opponent's value. Suppose, first, that the bidders are not allowed to communicate about their private information. Then we can consider the all-pay auction as a strategic form game, and, in a similar way as in Proposition 2, we can show that using correlated recommendations does not help to achieve payoffs different from the Bayesian Nash equilibrium payoffs.

Next, suppose that the bidders are allowed to communicate about their private information. One would expect that in a zero-sum game the players are not too keen on truthfully revealing their private information because it may be used against them by the opponents. This is indeed confirmed by Proposition 6 that says that no payoffconsequential voluntary sharing of private information is possible, and this result can be viewed as a version of the "no trade" result (Milgrom and Stokey 1982). Note that in any communication equilibrium a bidder can play the following strategy: (i) regardless of own type randomize over the type reports according to the prior probability distribution; (ii) regardless of the mediator's recommendations choose the same bids as in the Bayesian Nash equilibrium. It turns out that in our auxiliary zerosum game each player can guarantee himself at least his Bayesian Nash equilibrium payoff by playing such a strategy. The no trade result then follows from the fact that the players have common prior, and that every allocation, including the Bayesian Nash equilibrium outcome, is ex ante Pareto efficient (because the game is zero-sum).

Similar to the case of complete information, a result analogous to Proposition 6 is likely to hold in some environments with strictly positive reserve price if we can rule out the case when both bidders choose null bids. This, for example, happens when there is no overlap in the supports of the bidders' valuations, say, $\bar{v}_{2}<\underline{v}_{1}$, and the reserve price is low enough, $\underline{v}_{1}>r$. Then bid 0 is not rationalizable for bidder 1 for any beliefs over the opponent's types, because he prefers to bid slightly above \bar{v}_{2} to bidding 0. It remains an open question whether results analogous to Proposition 6 hold when the bidders have correlated or interdependent values. ${ }^{23}$

There exist some related results for the first-price auction under incomplete information. As mentioned in the previous section, Lopomo et al. (2011) study a model of collusion with pre-auction communication, side payments and bid recommendations in the first-price auction with two bidders. They show that in a symmetric environment with two possible types (with or without reserve) and discrete bid spaces the collusive

[^13]equilibria (and thus communication equilibria) are payoff equivalent to the unique Bayesian Nash equilibrium. ${ }^{24}$ Azacis and Vida (2015) study a similar environment in a model with a continuum of bids. They show that several restricted versions of communication equilibrium are payoff equivalent to the Bayesian Nash equilibrium, and they conjecture that the same is true for the canonical communication equilibrium. ${ }^{25}$

There are also several recent papers that apply the tools of Bayesian Persuasion and Information Design to various models of contests, including the all-pay auction. See, for example, Antsygina and Teteryatnikova (2022) for discussion of recent work in this area. The information design approach envisions an omniscient mediator who is assumed to have all information and who decides how much information to reveal to the players through signals (Bergemann and Morris 2019). To the best of our knowledge these papers on contests restrict attention to a mediator using only public signals (e.g. Antsygina and Teteryatnikova 2022), or to a mediator using private signals under various restrictions (e.g. Chen 2019). In such a framework there is obviously no concern with incentives for information revelation by the players, and nontrivial correlation of play as in this paper cannot arise because of restrictions on the allowed signals.

Kovenock et al. (2015) consider the incentives of the bidders in the all-pay auction to share their private information which is assumed to be verifiable. First, each bidder decides whether to disclose his value to the opponent, after that the bidders play the all-pay auction according to the Bayesian Nash equilibrium given their updated beliefs. In the case when the bidders' disclosure decisions take place after they observe the realizations of their values there exist equilibria with full information disclosure as well as equilibria without any information sharing. In the model of Kovenock et al. (2015) the bidders can hide their information but cannot lie about it, and this makes it is easier to achieve information revelation than in our setting. On the other hand, our model is more conducive to sustaining information revelation in the following respect. In Kovenock et al. (2015) the bidders' payoffs following any disclosure decision are determined by the unique continuation Bayesian Nash equilibria given the beliefs, but in our setting there may be multiple continuation correlated equilibria, and thus the bidders' payoffs are not necessarily uniquely determined by the beliefs. We demonstrate in the next example how this feature allows the provision of incentives for information revelation.
Example 3 Let $r \in(0,1)$, bidder 1 's value is 0 or 1 with probabilities p_{1} and $1-p_{1}$, bidder 2's value is 1 with probability 1. By part (ii) of Proposition 5 the Bayesian Nash equilibrium payoff of each bidder with value 1 is $\max \left\{p_{1}-r, 0\right\}$.

Consider the following scenario with pre-auction communication. Bidder 1 sends a cheap talk message to bidder 2, and then the bidders play the all-pay auction according to Bayesian Nash equilibrium given the updated beliefs. It is easy to see that there is no cheap-talk equilibrium where bidder 1 truthfully reveals his type. If bidder 2 believes

[^14]the announcement, then, after learning that $v_{1}=0$, bidder 2 bids r and expects to win with probability 1 ; after learning that $v_{1}=1$, the bidders play the Bayesian Nash equilibrium that yields a zero payoff to each bidder. But then bidder 1 of type 1 can do better by reporting type 0 , and then bidding slightly above r. This observation can be generalized to show that there are no cheap talk equilibria that result in payoffs that are different from the Bayesian Nash equilibrium payoffs of the game without communication. ${ }^{26}$

This is no longer true if after a cheap talk announcement the bidders can correlate their play. Let $p_{1} \in(0, r)$, so that the Bayesian Nash equilibrium payoffs of the game without communication are zero for either type of bidder 1 . Suppose type 0 of bidder 1 sends message m, and type 1 randomizes between messages m and m^{\prime}, so that the posterior beliefs that bidder 1's type is 0 following these two messages are $r+r^{2}(1-r)$ and 0 , respectively. After message m the bidders play according to the Bayesian Nash equilibrium, and after message m^{\prime} according to the correlated equilibrium from Example 1. Type 0 of bidder 1 has no incentive to deviate because he is not interested in bidding anything other than 0 . Type 1 of bidder 1 is willing to randomize between the messages because his expected payoff in either case is $r^{2}(1-r)$.

Next we show that in situations with two sided uncertainty there can also exist communication equilibria that result in bidders' payoffs that are higher than in the Bayesian Nash equilibrium. The behavior of the bidders of type v is coordinated in a way that is similar to the correlated equilibria in the complete information case, and when $p=0$ the construction is identical to that in the proof of Proposition 3 for the case of symmetric payoffs.

Proposition 7 Suppose there are two bidders and $r>0$. Each bidder's value is 0 or v (such that $v>r$) with probabilities p and $1-p$, independently of the opponent's value. Then for every $p \in\left[0, \frac{r}{v}\right)$ there exists a communication equilibrium that gives each bidder of type v a positive payoff. ${ }^{27}$

It is possible to show that in this environment all Bayesian Nash equilibria are inefficient in the sense that the good sometimes remains unsold even though there is a bidder with value above the reserve price. This is because at least one bidder with value above the reserve price submits a null bid with positive probability. ${ }^{28}$ However,

[^15]the constructed communication equilibrium is efficient. If only one bidder has a value above the reserve price, then this bidder submits an active bid, and thus gets the good, with probability one; if both bidders have values above the reserve price, then an active bid is submitted by at least one bidder.

Such a construction clearly involves some sharing of information about the values between the bidders. However, to provide the right incentives it is also important to maintain enough uncertainty about the opponents' values. For example, if it was known that the bidders' reports are revealed to their opponents with high probability, then it is possible to show that a bidder of type v has a profitable deviation. The idea is similar to that in Example 3: reporting type 0 induces the opponent to bid at the reserve price, and thus it is profitable to report type 0 and then bid slightly above the reserve price. To make such a deviation unprofitable it is necessary that the bidders of type v bid aggressively enough when the opponent has reported type 0 , and this is achieved through maintaining sufficient uncertainty about the opponent's type.

4.2 Three or more bidders

Here we continue to work with the symmetric independent case when each bidder's valuation can be either 0 or v. The Bayesian Nash equilibrium payoffs when there are three or more bidders are described next.

Proposition 8 Suppose there are $n \geq 3$ bidders and $r \geq 0$. Each bidder's value is 0 or $v($ such that $v>r$) with probabilities p and $1-p$, independently of the opponents' values. In every Bayesian Nash equilibrium type 0 of each bidder gets a payoff of zero, type v of each bidder gets a payoff of $\max \left\{p^{n-1} v-r, 0\right\}$.

Note that there can be no communication equilibrium such that some bidder gets a payoff below his Bayesian Nash equilibrium payoff. Bidding 0 guarantees a payoff of (at least) zero; bidding the reserve price r leads to winning whenever all opponents have zero valuations, and thus guarantees a payoff of (at least) $p^{n-1} v-r$.

The next result demonstrates that there exist communication equilibria such that each bidder gets a payoff higher than in the Bayesian Nash equilibrium. We focus on the case of no reserve price, but the construction can be extended to the case of a positive reserve price as well.

Proposition 9 In the environment described in Proposition 8, if $r=0$, then for p sufficiently small there exists a communication equilibrium such that each bidder of type v gets a payoff that is twice as large as in the Bayesian Nash equilibrium.

[^16]
5 Discussion

We have shown that in the complete information case with two bidders all correlated equilibria are payoff equivalent to the Nash equilibrium if there is no reserve price, or if it is commonly known that one bidder has a strictly higher value. By the revelation principle for games with communication this implies that the Nash equilibrium predictions in those settings are robust to pre-play communication between the bidders. Specifically, the bidders' expected payoffs and expected payments are unaffected by allowing them to communicate with each other prior to the auction using any mediated or unmediated communication protocol. ${ }^{29}$ We have also shown that in the case of two bidders with independent private values and no reserve price all communication equilibria are payoff equivalent to the Bayesian Nash equilibrium. Hence the Bayesian Nash equilibrium predictions in this case are also robust to pre-play communication between the players. It would be interesting to see if the result can be extended beyond the case of independent private values.

Recently Hwang and Rey-Bellet (2020) used a payoff transformation similar to (1) in Proposition 2 to show that other models of contests and related games are strategically equivalent to particular zero-sum games. ${ }^{30}$ These results in particular imply payoff equivalence of Nash and correlated equilibria in such games. ${ }^{31}$ Haimanko (2022) used a similar approach for common value contests with incomplete information.

We have demonstrated that in the complete information settings with three or more symmetric bidders, and two symmetric bidders and a positive reserve price, there may exist correlated equilibria that are not payoff equivalent to the Nash equilibrium. Specifically, the bidders' payoffs can be higher than in the Nash equilibrium, but never lower. This suggests that allowing the bidders to communicate before bidding may improve their payoffs, and, in case the bids represent socially unproductive expenses, communication may be unambiguously good for the society. On the other hand, if the bids represent transfers to the seller or some socially productive activities, then one should take into account that though communication may improve the bidders' payoffs and efficiency of the allocation, it may also result in less intense bidding. Similarly, we have demonstrated for particular independent private value settings with binary types that there may exist communication equilibria that provide higher payoffs to the bidders in comparison with the Bayesian Nash equilibrium. It would be interesting obtain a full characterization of correlated equilibria in the complete information environments and communication equilibria in the incomplete information environments.

[^17]The correlated and communication equilibria describe all possible outcomes that can be potentially achieved with the help of communication in a self-enforcing way. It is important to know how exactly communication between the bidders can be organized if one wants to implement the outcome of some particular correlated or communication equilibrium. One natural approach is to find an extra player who is able to play the role of a mediator as described in Sect. 2. The mediator should be able to communicate with each bidder privately, or, alternatively, he should be able to communicate with each bidder by encrypted messages according to a previously agreed upon code (Lehrer and Sorin 1997). The mediator should also be able to commit to his communication strategy, but if this is impossible, then in some situations "strategic mediators" can be used as well. ${ }^{32}$

It may also be interesting to know if the outcomes of the correlated and communication equilibria can be implemented with a help of some unmediated communication procedure between the bidders. ${ }^{33}$ Let us briefly discuss the case of two bidders. In our constructed correlated equilibria it is essential that the bidders remain uncertain about the strategies that are recommended to their opponents, and in the communication equilibria it is also important that the bidders are uncertain about the values of the opponents. Thus it is unlikely that the outcomes of these correlated and communication equilibria can be implemented by some simple unmediated communication procedure, whereby the bidders directly communicate with each other, because such communication cannot generate the desired correlated beliefs. ${ }^{34}$ This implies that successful unmediated communication must use correlation devices and/or noisy communication channels.

To illustrate, here is one of many possible ways to implement the outcome of the correlated equilibrium in Example 1. Bidder 2 with probability r announces to bidder 1 that he will bid 0 , and with probability $1-r$ that he will bid above r, and then bids in the auction according to his announcement. The announcement is made in a foreign language such that bidder 1 is able to understand it with probability r, and the language ability of bidder 1 is known only to him. If bidder 1 understands the announcement of bidder 2 , then he optimally responds to it, i.e. bids r if bidder 2 says he will bid 0 , and bids 0 if bidder 2 says he will bid above r. If bidder 1 does not understand the announcement of bidder 2 , he bids above $r .{ }^{35}$

[^18]
6 Appendix

6.1 Proofs of Section 3

Proof of Proposition 3 Denote $u_{i}=\frac{1}{v-r} U_{i}$ for $i=1$, 2, and fix $\left(u_{1}, u_{2}\right) \in \mathbb{R}_{+}^{2}$ such that $v^{2} u_{i}+r^{2} u_{j} \leq r^{2}$. The bidders are given recommendations according to the following probability distribution, where "bid above r " means "bid uniformly on $(r, v]^{\prime \prime}{ }^{36}$

1's bid \backslash 2's bid	bid 0	$\operatorname{bid} r$	bid above r
$\operatorname{bid} 0$	0	u_{2}	$\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)$
$\operatorname{bid} r$	u_{1}	0	0
bid above r	$\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)$	0	$\frac{v-r}{v+r}\left(1-u_{1}-u_{2}\right)$

Suppose bidder 1 is suggested to bid 0 and bids $b \in(r, v]$ instead. ${ }^{37}$ Then his payoff is

$$
\begin{aligned}
& \left(\frac{u_{2}}{u_{2}+\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)}+\frac{\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)}{u_{2}+\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)}\left(\frac{b-r}{v-r}\right)\right) v-b \\
& =\frac{r^{2} u_{1}+v^{2} u_{2}-r^{2}}{\left(v^{2}-r^{2}\right)\left(u_{2}+\frac{r}{v+r}\left(1-u_{1}-u_{2}\right)\right)}(v-b) \leq 0
\end{aligned}
$$

where the inequality follows from $r^{2} u_{1}+v^{2} u_{2} \leq r^{2}$. If bidder 1 is suggested to bid r, then it is clearly optimal to comply, since the opponent bids 0 in such case. If bidder 1 is suggested to bid above r, then he is indifferent between all bids since the payoff from bidding $b \in[r, v]$ is

$$
\left(\frac{r}{v}+\left(1-\frac{r}{v}\right)\left(\frac{b-r}{v-r}\right)\right) v-b=0
$$

To summarize, bidder 1 gets a payoff of $v-r$ when he is suggested to bid r, and zero payoff otherwise. Hence, his ex ante payoff is $u_{1}(v-r)=U_{1}$. Using a similar argument for bidder 2, we conclude that the considered correlation rule is a correlated equilibrium, and it achieves the desired payoffs.

[^19]Proof of Proposition 4 Fix $U \in[0, \bar{U}]$, where $\bar{U}=\frac{2(v-r)}{n} \frac{(n-2) v^{2}+(n-2) v r+2 n r^{2}}{(9 n-14) v^{2}+(6 n-8) v r+(n+6) r^{2}}$. Consider the following symmetric correlation rule. First, a pair of bidders is randomly chosen, with each pair being equally likely to be chosen. Next, the bidders receive private bid recommendations without being told whether they have been chosen. The bidders who are not chosen are recommended to bid 0 , and the chosen bidders are given recommendations according to the following probability distribution, where "bid low" means "bid uniformly on $\left(r, \frac{1}{2}(v+r)\right.$]", and "bid high" means "bid uniformly on $\left(\frac{1}{2}(v+r), v\right]$ ", and where $x=\frac{1}{v+r}\left(\frac{v-r}{4}-\frac{3 v+r}{v} \frac{n}{8} U\right) .{ }^{38}$

i 's bid $\backslash j$'s bid	bid 0	bid low	bid high
bid 0	0	$\pi_{l}=\frac{2 r}{v-r} x+\frac{v+r}{v-r} \frac{n}{2 v} U$	$\pi_{h}=\frac{2 r}{v-r} x$
bid low	$\pi_{l}=\frac{2 r}{v-r} x+\frac{v+r}{v-r} \frac{n}{2 v} U$	$\pi_{l l}=x+\frac{n}{2 v} U$	$\pi_{h l}=x$
bid high	$\pi_{h}=\frac{2 r}{v-r} x$	$\pi_{h l}=x$	$\pi_{h h}=x$

If a bidder is suggested to bid 0 , then he knows that either he was not chosen (which happens with probability $\frac{n-2}{n}$), or that he was chosen but only his opponent was suggested to bid above 0 (which happens with probability $\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)$).

If this bidder bids $b \in\left(r, \frac{1}{2}(v+r)\right]$ instead, then he has a chance to win only if none of his opponents bid high. In particular, bidder i could win if (i) he was not chosen, and one chosen bidder bids low (which happens with probability $\frac{n-2}{n}\left(2 \pi_{l}\right)$); (ii) he was not chosen, and two chosen bidders bid low (which happens with probability $\frac{n-2}{n} \pi_{l l}$); (iii) he was chosen, and his opponent bids low (which happens with probability $\frac{2}{n} \pi_{l}$). The expected payoff this bidder is then

$$
\begin{align*}
& \left(\frac{\frac{n-2}{n}\left(2 \pi_{l}\right)+\frac{2}{n} \pi_{l}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)}\left(\frac{b-r}{\frac{1}{2}(v+r)-r}\right)+\frac{\frac{n-2}{n} \pi_{l l}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)}\right. \\
& \left.\left(\frac{b-r}{\frac{1}{2}(v+r)-r}\right)^{2}\right) v-b \tag{2}
\end{align*}
$$

Note that (2) is equal to $-r$ if $b=r$. If $b=\frac{1}{2}(v+r)$, then (2) becomes

$$
\begin{align*}
\frac{\frac{n-2}{n}\left(2 \pi_{l}+\pi_{l l}\right)+\frac{2}{n} \pi_{l}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)} v-\frac{1}{2}(v+r)= & \frac{n}{8} \frac{(9 n-14) v^{2}+(6 n-8) v r+(n+6) r^{2}}{(v-r)((n-2) v+n r+n U)} \\
& (U-\bar{U}) \leq 0 \tag{3}
\end{align*}
$$

38 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is because

$$
\frac{v-r}{4}-\frac{3 v+r}{v} \frac{n}{8} U \geq \frac{v-r}{4}-\frac{3 v+r}{v} \frac{n}{8} \bar{U}=\frac{(v-r)^{2}(v+r)((3 n-4) v+n r)}{2 v\left((9 n-14) v^{2}+(6 n-8) v r+(n+6) r^{2}\right)} \geq 0
$$

where the equality is by definition of \bar{U}.
where the inequality holds since $U \leq \bar{U}$. Since (2) is convex in b, this implies that it is nonpositive for every $b \in\left[r, \frac{1}{2}(v+r)\right]$.

If this bidder bids $b \in\left(\frac{1}{2}(v+r), v\right]$ instead, then he wins for sure if none of his opponents bid high, and has a chance to win otherwise. In particular, bidder i wins for sure if (i) he was not chosen, and none of the chosen bidders bid high (which happens with probability $\frac{n-2}{n}\left(2 \pi_{l}+\pi_{l l}\right)$); (ii) he was chosen, and his opponent does not bid high (which happens with probability $\frac{2}{n} \pi_{l}$). Also bidder i could win if (i) he was not chosen, and one chosen bidder bids high (which happens with probability $\left.\frac{n-2}{n}\left(2 \pi_{h}+2 \pi_{h l}\right)\right)$; (ii) he was not chosen, and two chosen bidders bid high (which happens with probability $\frac{n-2}{n} \pi_{h h}$); (iii) he was chosen, and his opponent bids high (which happens with probability $\frac{2}{n} \pi_{h}$). The expected payoff of this bidder is then

$$
\begin{align*}
& \left(\frac{\frac{n-2}{n}\left(2 \pi_{l}+\pi_{l l}\right)+\frac{2}{n} \pi_{l}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)}+\frac{\frac{n-2}{n}\left(2 \pi_{h}+2 \pi_{h l}\right)+\frac{2}{n} \pi_{h}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)}\left(\frac{b-\frac{1}{2}(v+r)}{v-\frac{1}{2}(v+r)}\right)\right. \\
& \left.\quad+\frac{\frac{n-2}{n} \pi_{h h}}{\frac{n-2}{n}+\frac{2}{n}\left(\pi_{l}+\pi_{h}\right)}\left(\frac{b-\frac{1}{2}(v+r)}{v-\frac{1}{2}(v+r)}\right)^{2}\right) v-b \tag{4}
\end{align*}
$$

Note that (4) is equal to (3) if $b=\frac{1}{2}(v+r)$, and (4) is equal to zero if $b=v$. Since (4) is convex in b, this implies that it is nonpositive for every $b \in\left(\frac{1}{2}(v+r), v\right]$.

If a bidder is suggested to bid low, then he knows that he is chosen, and faces exactly one chosen opponent. This opponent bids 0 , low, or high with probabilities $\frac{\pi_{l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}, \frac{\pi_{l l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}$, and $\frac{\pi_{h l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}$, respectively. The expected payoff of this bidder from bidding any $b \in\left(r, \frac{1}{2}(v+r)\right]$ is

$$
\begin{aligned}
\left(\frac{\pi_{l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}+\frac{\pi_{l l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}\left(\frac{b-r}{\frac{1}{2}(v+r)-r}\right)\right) v-b & =\frac{U}{\frac{2}{n}\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)} \\
& \geq 0
\end{aligned}
$$

If he bids $b \in\left(\frac{1}{2}(v+r), v\right]$ instead, then his payoff is

$$
\begin{aligned}
& \left(\frac{\pi_{l}+\pi_{l l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}+\frac{\pi_{h l}}{\pi_{l}+\pi_{l l}+\pi_{h l}}\left(\frac{b-\frac{1}{2}(v+r)}{v-\frac{1}{2}(v+r)}\right)\right) v-b \\
& =\frac{U}{\frac{2}{n}\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)} \frac{2(v-b)}{v-r}<\frac{U}{\frac{2}{n}\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)}
\end{aligned}
$$

If a bidder is suggested to bid high, then he knows that he is chosen, and faces exactly one chosen opponent. This opponent bids 0 , low, or high with probabilities $\frac{\pi_{h}}{\pi_{h}+\pi_{h l}+\pi_{h h}}, \frac{\pi_{h l}}{\pi_{h}+\pi_{h l}+\pi_{h h}}$, and $\frac{\pi_{h h}}{\pi_{h}+\pi_{h l}+\pi_{h h}}$, respectively. The expected payoff of this
bidder from bidding any $b \in\left(\frac{1}{2}(v+r), \frac{1}{2} v\right]$ is

$$
\begin{aligned}
& \left(\frac{\pi_{h}+\pi_{h l}}{\pi_{h}+\pi_{h l}+\pi_{h h}}+\frac{\pi_{h h}}{\pi_{h}+\pi_{h l}+\pi_{h h}}\left(\frac{b-\frac{1}{2}(v+r)}{v-\frac{1}{2}(v+r)}\right)\right) v-b \\
& =\left(\frac{v+r}{2 v}+\frac{v-r}{v}\left(\frac{b-\frac{1}{2}(v+r)}{v-r}\right)\right) v-b=0 .
\end{aligned}
$$

If he bids $b \in\left(r, \frac{1}{2}(v+r)\right]$ instead, then his payoff is

$$
\begin{aligned}
& \left(\frac{\pi_{h}}{\pi_{h}+\pi_{h l}+\pi_{h h}}+\frac{\pi_{h l}}{\pi_{h}+\pi_{h l}+\pi_{h h}}\left(\frac{b-r}{\frac{1}{2}(v+r)-r}\right)\right) v-b \\
& =\left(\frac{r}{v}+\frac{v-r}{v}\left(\frac{b-r}{v-r}\right)\right) v-b=0
\end{aligned}
$$

Each bidder gets a payoff of $\frac{U}{\frac{2}{n}\left(\pi_{l}+\pi_{l}+\pi_{h l}\right)}$ when he is suggested to bid low, and zero payoff otherwise. Hence, his ex ante payoff is U. Thus the considered correlation rule is a correlated equilibrium, and it achieves the desired payoffs.

6.2 Proofs of Section 4

Proof of Proposition 5 (ii) In every Bayesian Nash equilibrium, type 0 of each bidder bids 0 and gets a zero payoff. Let us represent the equilibrium strategy of bidder i of type v as a distribution function $G_{i}:\{0\} \cup[r, \infty) \rightarrow[0,1]$, let \underline{b}_{i} and \bar{b}_{i} be the infimum and the supremum of the support of his equilibrium bids, and let $U_{i} \geq 0$ be his equilibrium payoff.

Note that $U_{i} \leq v-\bar{b}_{i}$. Also note that bidder j of type v can secure a payoff arbitrarily close to $v-\bar{b}_{i}$ by bidding slightly above \bar{b}_{i}. Thus $U_{j} \geq v-\bar{b}_{i}$. Reversing the roles of i and j, and rearranging, we get $U_{i}=U_{j}=U$.

Next, note that bidder i of type v can secure a payoff arbitrarily close to $p_{j} v-$ r by bidding slightly above r, and thus winning when the opponent is of type 0 . Hence, $U \geq \max \left\{p_{1} v-r, p_{2} v-r, 0\right\}$. If this inequality is strict, then neither bidder of type v bids 0 with positive probability, and thus $\underline{b}_{i}, \underline{b}_{j} \geq r$. Moreover, $U>$ $\max \left\{p_{1} v-r, p_{2} v-r, 0\right\}$ implies that each bidder of type v must be winning with positive probability against the opponent of type v. Then $\underline{b}_{i}<\underline{b}_{j}$ is impossible, since bidder i who bids below \underline{b}_{j} always loses against the opponent of type v. But $\underline{b}_{i}=\underline{b}_{j}=\underline{b}$ is impossible either: the requirement of winning with positive probability against the opponent of type v implies that both bidders bid \underline{b} with positive probability, which cannot happen in equilibrium since each bidder could profitably deviate to a slightly higher bid. Thus $U=\max \left\{p_{1} v-r, p_{2} v-r, 0\right\}$.

Let $p_{1} \leq p_{2}$. It is straightforward to check that the following is a Bayesian Nash equilibrium. Types 0 of both bidders bid 0 . Type v of bidder 1 bids 0 and r with probabilities $\frac{\min \left\{r-p_{2} v, 0\right\}}{\left(1-p_{1}\right) v}$ and $\frac{p_{2}-p_{1}}{1-p_{1}}$, respectively, and bids uniformly on
$\left(r, \min \left\{\left(1-p_{2}\right) v+r, v\right\}\right]$ otherwise; type v of bidder 2 bids 0 with probability $\frac{\min \left\{r-p_{2} v, 0\right\}}{\left(1-p_{2}\right) v}$, and bids uniformly on $\left(r, \min \left\{\left(1-p_{2}\right) v+r, v\right\}\right]$ otherwise.

Proof of Proposition 6 Denote by $U_{i}^{*}\left(v_{i}\right)$ the interim expected payoff of player i of type v_{i} in the Bayesian Nash equilibrium $\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$, and by $U_{i}\left(v_{i}\right)$ the interim expected payoff of player i of type v_{i} in the communication equilibrium μ. Let $\mu_{i}\left(\cdot \mid v_{i}\right)$ be the marginal probability measure of μ on A_{i} conditional on v_{i} (defined in Sect.2).

By the definition of Bayesian Nash equilibrium, for every i and P_{i}-a.e. v_{i}, it is unprofitable to deviate to any strategy $\widetilde{\mu}_{i}\left(\cdot \mid v_{i}\right)$:

$$
\begin{align*}
U_{i}^{*}\left(v_{i}\right) & =v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \\
& \geq v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \tilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \tilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right) \tag{5}
\end{align*}
$$

By the definition of communication equilibrium, for every i and P_{i}-a.e. v_{i}, it is unprofitable to deviate to the following strategy: first, randomize over the type reports according to P_{i}, and then, regardless of the mediator's recommendation, choose bids according to some bidding strategy $\tilde{\mu}_{i}\left(\cdot \mid v_{i}\right)$:

$$
\begin{align*}
U_{i}\left(v_{i}\right)= & v_{i} \int_{T_{j}}\left(\int_{A} \rho_{i}(b) \mu\left(d b \mid v_{i}, v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \mu_{i}\left(d b_{i} \mid v_{i}\right) \\
\geq & v_{i} \int_{T_{j}}\left(\int_{A}\left(\int_{A_{i}} \rho_{i}\left(\widehat{b}_{i}, b_{j}\right) \widetilde{\mu}_{i}\left(d \widehat{b}_{i} \mid v_{i}\right)\right) \int_{T_{j}} \mu\left(d b \mid \widehat{v}_{i}, v_{j}\right) d P_{i}\left(d \widehat{v}_{i}\right)\right) P_{j}\left(d v_{j}\right) \\
& -\int_{A_{i}} \widehat{b}_{i} \widetilde{\mu}_{i}\left(d \widehat{b}_{i} \mid v_{i}\right) \\
= & v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}\left(\widehat{b}_{i}, b_{j}\right) \widetilde{\mu}_{i}\left(d \widehat{b}_{i} \mid v_{i}\right) \mu_{j}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} \widehat{b}_{i} \widetilde{\mu}_{i}\left(d \widehat{b}_{i} \mid v_{i}\right) \tag{6}
\end{align*}
$$

For every i and $v_{i} \neq 0$, such that both (5) and (6) hold, perform the following operations. Take (5) with $\widetilde{\mu}_{i}=\mu_{i}$ and (6) with $\widetilde{\mu}_{i}=\mu_{i}^{*}$, add the two resulting inequalities, and divide by v_{i}. Then for every i and P_{i}-a.e. v_{i} we get

$$
\begin{align*}
& \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)+\int_{A} \rho_{i}(b) \mu\left(d b \mid v_{i}, v_{j}\right)\right) P_{j}\left(d v_{j}\right) \\
& \geq \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \mu_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)+\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right) \tag{7}
\end{align*}
$$

Next, integrate (7) with respect to P_{i} over the set of types of bidder i for which inequality (7) holds. Note that the resulting inequality continues to hold even if we
integrate over T_{i} because (7) is satisfied for P_{i}-a.e. v_{i}, and because we have assumed that $P_{i}(\{0\})=0$. Sum up the resulting inequalities over i :

$$
\begin{align*}
& \int_{T}\left(\int_{A_{j}} \int_{A_{i}} \sum_{k=1,2} \rho_{k}(b) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)+\int_{A} \sum_{k=1,2} \rho_{k}(b) \mu\left(d b \mid v_{i}, v_{j}\right)\right) P(d v) \\
& \quad \geq \int_{T}\left(\int_{A_{j}} \int_{A_{i}} \sum_{k=1,2} \rho_{k}(b) \mu_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)+\int_{A_{j}} \int_{A_{i}} \sum_{k=1,2} \rho_{k}(b) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}\left(d b_{j} \mid v_{j}\right)\right) P(d v) \tag{8}
\end{align*}
$$

Since $\sum_{k=1,2} \rho_{k}(b)=1$ for every b, inequality (8) holds as an equality. This implies that the following inequalities hold as equalities as well for P_{i}-a.e. v_{i} : inequality (5) when $\widetilde{\mu}_{i}=\mu_{i}$, and inequality (6) when $\widetilde{\mu}_{i}=\mu_{i}^{*}$.

Hence, for every i, P_{i}-a.e. v_{i}, the following is true for any $\widetilde{\mu}_{i}\left(\cdot \mid v_{i}\right)$:

$$
\begin{aligned}
U_{i}^{*}\left(v_{i}\right) & =v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \mu_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \mu_{i}\left(d b_{i} \mid v_{i}\right) \\
& \geq v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}(b) \widetilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}^{*}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \widetilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{i}\left(v_{i}\right) & =v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}\left(b_{i}, b_{j}\right) \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \mu_{j}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \mu_{i}^{*}\left(d b_{i} \mid v_{i}\right) \\
& \geq v_{i} \int_{T_{j}}\left(\int_{A_{j}} \int_{A_{i}} \rho_{i}\left(b_{i}, b_{j}\right) \widetilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right) \mu_{j}\left(d b_{j} \mid v_{j}\right)\right) P_{j}\left(d v_{j}\right)-\int_{A_{i}} b_{i} \widetilde{\mu}_{i}\left(d b_{i} \mid v_{i}\right)
\end{aligned}
$$

This implies that $\left(\mu_{i}^{*}, \mu_{j}\right)$ is a Bayesian Nash equilibrium. In this equilibrium bidder i of type v_{i} gets payoff $U_{i}\left(v_{i}\right)$, and bidder j of type v_{j} gets payoff $U_{j}^{*}\left(v_{j}\right)$. Since by assumption the Bayesian Nash equilibrium is unique, for every i we have $\mu_{i}=\mu_{i}^{*}$, and thus $U_{i}^{*}\left(v_{i}\right)=U_{i}\left(v_{i}\right)$ for every P_{i}-a.e. $v_{i} .{ }^{39}$

Proof of Proposition 7 We show that for $p \in\left[0, \frac{r}{v}\right)$ there exists a communication equilibrium such that each bidder of type v gets a payoff of $\frac{\left(r^{2}-p^{2} v^{2}\right)(v-r)}{v^{2}+r^{2}-2 p v^{2}}$. Consider the following symmetric communication rule. If a bidder reports type 0 , then he is suggested to bid 0 . If a bidder reports type v and his opponent reports type 0 , then this bidder is suggested to bid r or "bid above r " (which means "bid uniformly on (r, v]"), with probabilities $\widehat{\pi}=\frac{(r-p v)(v+r)}{v^{2}+r^{2}-2 p v^{2}}$ and $1-\widehat{\pi}$, respectively. If both bidders report type v, then they are given recommendations according to the following probability

[^20]distribution. ${ }^{40}$

1's bid \backslash 2's bid	bid 0	bid r	bid above r
bid 0	0	$\pi_{r}=\frac{(r-p v) r}{v^{2}+r^{2}-2 p v^{2}}$	$\pi_{h}=\frac{(r-p v)(v-r)}{v^{2}+r^{2}-2 p v^{2}}$
bid r	$\pi_{r}=\frac{(r-p v) r}{v^{2}+r^{2}-2 p v^{2}}$	0	0
bid above r	$\pi_{h}=\frac{(r-p v)(v-r)}{v^{2}+r^{2}-2 p v^{2}}$	0	$\pi_{h h}=\frac{(v-r)^{2}}{v^{2}+r^{2}-2 p v^{2}}$

We need to check the incentives to tell the truth and to comply with the recommendations only for the bidders of type v, since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0 , then he knows that his opponent must be of type v and bids r or above r, with probabilities $\frac{\pi_{r}}{\pi_{r}+\pi_{h}}$ and $\frac{\pi_{h}}{\pi_{r}+\pi_{h}}$, respectively. If this bidder bids $b \in(r, v]$ instead, then his payoff is ${ }^{41}$

$$
\left(\frac{\pi_{r}}{\pi_{r}+\pi_{h}}+\frac{\pi_{h}}{\pi_{r}+\pi_{h}}\left(\frac{b-r}{v-r}\right)\right) v-b=\left(\frac{r}{v}+\frac{v-r}{v}\left(\frac{b-r}{v-r}\right)\right) v-b=0
$$

If a bidder of type v has reported v and is suggested to bid r, then it is clearly optimal to comply, since the opponent bids 0 , regardless of the type, in such case.

If a bidder of type v has reported v and is suggested to bid above r, then he knows that either his opponent is of type 0 and thus bids 0 , or his opponent is of type v and bids 0 or high, with probabilities $\frac{p(1-\widehat{\pi})}{p(1-\hat{\pi})+(1-p)\left(\pi_{h}+\pi_{h h}\right)}, \frac{(1-p) \pi_{h}}{p(1-\hat{\pi})+(1-p)\left(\pi_{h}+\pi_{h h}\right)}$, and $\frac{(1-p) \pi_{h h}}{p(1-\hat{\pi})+(1-p)\left(\pi_{h}+\pi_{h h}\right)}$, respectively. The expected payoff of this bidder from bidding any $b \in[r, v]$ is

$$
\begin{aligned}
& \left(\frac{p(1-\widehat{\pi})+(1-p) \pi_{h}}{p(1-\widehat{\pi})+(1-p)\left(\pi_{h}+\pi_{h h}\right)}+\frac{(1-p) \pi_{h h}}{p(1-\widehat{\pi})+(1-p)\left(\pi_{h}+\pi_{h h}\right)}\left(\frac{b-r}{v-r}\right)\right) v-b \\
& \quad=\left(\frac{r}{v}+\frac{v-r}{v}\left(\frac{b-r}{v-r}\right)\right) v-b=0
\end{aligned}
$$

To summarize, if a bidder of type v truthfully reports his type and follows the recommendations, then he gets a payoff of $v-r$ when he is suggested to bid r, and zero payoff otherwise. Hence, his ex ante payoff is $\left(p \widehat{\pi}+(1-p) \pi_{r}\right)(v-r)=$ $\frac{\left(r^{2}-p^{2} v^{2}\right)(v-r)}{v^{2}+r^{2}-2 p v^{2}}$.

If a bidder of type v has reported 0 , then he is suggested to bid 0 . He knows that either his opponent is of type 0 and thus bids 0 , or his opponent is of type v and bids r or above r, with probabilities $p,(1-p) \widehat{\pi}$, and $(1-p)(1-\widehat{\pi})$, respectively. If this

[^21]bidder bids $b \in(r, v]$, then his payoff is
\[

$$
\begin{aligned}
& \left((p+(1-p) \widehat{\pi})+(1-p)(1-\widehat{\pi})\left(\frac{b-r}{v-r}\right)\right) v-b \\
& \quad \leq \max \{(p+(1-p) \widehat{\pi}) v-r, 0\}=\frac{\left(r^{2}-p^{2} v^{2}\right)(v-r)}{v^{2}+r^{2}-2 p v^{2}}
\end{aligned}
$$
\]

where the inequality follows from the fact that payoff is a linear function of b and is thus maximized either at $b=r$ or at $b=v$.

Thus the considered communication rule is a communication equilibrium, and it achieves the desired payoffs.

Proof of Proposition 8 The proof is similar to the proof of part (ii) of Proposition 5. In every Bayesian Nash equilibrium, type 0 of each bidder bids 0 and gets a zero payoff. Let the equilibrium strategy of bidder i of type v be represented by distribution function $G_{i}:\{0\} \cup[r, \infty) \rightarrow[0,1], \underline{b}_{i}$ and \bar{b}_{i} be the infimum and the supremum of the support of his equilibrium bids, and $U_{i} \geq 0$ be his equilibrium payoff.

Note that $U_{i} \leq \prod_{k \neq i}\left(p+(1-p) G_{k}\left(\bar{b}_{i}\right)\right) v-\bar{b}_{i}$. Also note that bidder j of type v can secure a payoff arbitrarily close to $\prod_{k \neq i, j}\left(p+(1-p) G_{k}\left(\bar{b}_{i}\right)\right) v-\bar{b}_{i}$ by bidding slightly above \bar{b}_{i}. Thus $U_{j} \geq U_{i}$. Since this is true for every pair of i and j, we have $U_{i}=U$ for every i.

Next, note that bidder i of type v can secure a payoff arbitrarily close to $p^{n-1} v-r$ by bidding slightly above r, and thus winning when the opponent is of type 0 . Hence, $U \geq \max \left\{p^{n-1} v-r, 0\right\}$. If this inequality is strict, then neither bidder bids 0 with positive probability, and thus $\underline{b}_{i} \geq r$ for every i. Moreover, $U>\max \left\{p^{n-1} v-r, 0\right\}$ implies that each bidder of type v must be winning with positive probability against some opponent of type v. Then it is impossible to have $\underline{b}_{i}<\underline{b}=\min _{j \neq i} \underline{b}_{j}$, since bidder i who bids below \underline{b} always loses against the opponents of type v. But $\underline{b}_{i}=\underline{b}$ is impossible either: the requirement of winning with positive probability against some opponent of type v implies that the bidders who bid \underline{b} must do so with positive probability, which cannot happen in equilibrium since each bidder could profitably deviate to a slightly higher bid. Thus $U=\max \left\{p^{n-1} v-r, 0\right\}$.

It is straightforward to check that the following is a Bayesian Nash equilibrium. Type 0 of each bidder bids 0 . Type v of each bidder bids 0 with probability $x=\frac{1}{1-p}\left(\max \left\{\left(\frac{r}{v}\right)^{\frac{1}{n-1}}-p, 0\right\}\right)$, and bids according to $G(b)=$ $\frac{1}{1-p}\left(\left(\max \left\{p^{n-1}-\frac{r}{v}, 0\right\}+\frac{b}{v}\right)^{\frac{1}{n-1}}-p\right)$ on $\left(r, \min \left\{\left(1-p^{n-1}\right) v+r, v\right\}\right]$.

Proof of Proposition 9 We show for sufficiently small $p>0$ there exists a communication equilibrium such that each bidder of type v gets a payoff of $2 p^{n-1} v$. Consider the following symmetric communication rule. If a bidder reports type 0 , then he is suggested to bid 0 . If exactly one bidder reports v, then this bidder is suggested to"bid low" (which means "bid uniformly on $\left(0, \frac{1}{2} v\right]$ "). If $m>1$ bidders report v, then
a pair of bidders out of these m bidders is randomly chosen, with each pair being equally likely to be chosen. The bidders receive private bid recommendations without being told whether they have been chosen. The bidders who are not chosen are recommended to bid 0 , and the chosen bidders are given recommendations according to the following probability distribution where "bid high" means "bid uniformly on $\left(\frac{1}{2} v, v\right]$ ", and where

$$
g=\sum_{k=1}^{n-1} \frac{(n-1)!}{k!(n-1-k)!}(1-p)^{k} p^{n-1-k}\left(\frac{2}{k+1}\right)=2\left(\frac{1}{n} \frac{1-p^{n}}{1-p}-p^{n-1}\right)
$$

is the probability that a bidder who submitted report v was chosen and that he is not the only one who submitted $v .{ }^{42}$

i 's bid $\backslash j$'s bid	bid 0	bid low	bid high
bid 0	0	$\pi_{l}=\frac{1}{g} p^{n-1}$	0
bid low	$\pi_{l}=\frac{1}{g} p^{n-1}$	$\pi_{l l}=\frac{1}{4}+\frac{1}{g} p^{n-1}$	$\pi_{h l}=\frac{1}{4}-\frac{1}{g} p^{n-1}$
bid high	0	$\pi_{h l}=\frac{1}{4}-\frac{1}{g} p^{n-1}$	$\pi_{h h}=\frac{1}{4}-\frac{1}{g} p^{n-1}$

We need to check the incentives to tell the truth and to comply with the recommendations only for the bidders of type v, since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0 , then he knows that either he was not chosen (which happens with probability $1-p^{n-1}-g$), or that he was chosen but only his opponent is suggested to bid above 0 (which happens with probability $g \pi_{l}$).

If this bidder bids $b \in\left(0, \frac{1}{2} v\right]$ instead, then he has a chance to win only if none of his opponents bid high. In particular, bidder i could win if (i) he was not chosen, and one chosen bidder bids low (which happens with probability $\left.\left(1-p^{n-1}-g\right) 2 \pi_{l}\right)$; (ii) he was not chosen, and two chosen bidders bid low (which happens with probability $\left.\left(1-p^{n-1}-g\right) \pi_{l l}\right)$; (iii) he was chosen, and his opponent bids low (which happens with probability $g \pi_{l}$). The expected payoff of this bidder is then

$$
\begin{equation*}
\left(\frac{\left(1-p^{n-1}-g\right) 2 \pi_{l}+g \pi_{l}}{1-g}\left(\frac{b}{\frac{1}{2} v}\right)+\frac{\left(1-p^{n-1}-g\right) \pi_{l l}}{1-g}\left(\frac{b}{\frac{1}{2} v}\right)^{2}\right) v-b \tag{9}
\end{equation*}
$$

[^22]Note that (9) is equal to 0 if $b=0$. If $b=\frac{1}{2} v$, then (9) becomes

$$
\begin{equation*}
\left(\frac{\left(1-p^{n-1}-g\right)\left(2 \pi_{l}+\pi_{l l}\right)+g \pi_{l}}{1-g}\right) v-\frac{1}{2} v=\left(\frac{\left(3 \frac{1-p^{n-1}}{g}-\frac{9}{4}\right) p^{n-1}}{1-g}-\frac{1}{4}\right) v \tag{10}
\end{equation*}
$$

Note that (10) is equal to $-\frac{1}{4} v$ if $p=0$, and that (10) is continuous in p. Thus for p small enough (9) is nonpositive at $b=0$ and at $b=\frac{1}{2} v$, and it is convex in b on $\left(0, \frac{1}{2} v\right]$, which implies that (9) is nonpositive for every $b \in\left(0, \frac{1}{2} v\right]$.

If this bidder bids $b \in\left(\frac{1}{2} v, v\right]$ instead, then he wins for sure if none of his opponents bids high, and has a chance to win otherwise. In particular, bidder i wins for sure if (i) he was not chosen, and none of the chosen bidders bid high (which happens with probability $\left.\left(1-p^{n-1}-g\right)\left(2 \pi_{l}+\pi_{l l}\right)\right)$; (ii) he was chosen, and his opponent does not bid high (which happens with probability $g \pi_{l}$). Also bidder i could win if (i) he was not chosen, and one chosen bidder bids high (which happens with probability $\left.\left(1-p^{n-1}-g\right) 2 \pi_{h l}\right)$; (ii) he was not chosen, and two chosen bidders bid high (which happens with probability $\left.\left(1-p^{n-1}-g\right) \pi_{h h}\right)$. The expected payoff of this bidder is then

$$
\begin{align*}
& \left(\frac{\left(1-p^{n-1}-g\right)\left(2 \pi_{l}+\pi_{l l}\right)+g \pi_{l}}{1-g}+\frac{\left(1-p^{n-1}-g\right) 2 \pi_{h l}}{1-g}\left(\frac{b-\frac{1}{2} v}{\frac{1}{2} v}\right)\right. \\
& \left.\quad+\frac{\left(1-p^{n-1}-g\right) \pi_{h h}}{1-g}\left(\frac{b-\frac{1}{2} v}{\frac{1}{2} v}\right)^{2}\right) v-b \tag{11}
\end{align*}
$$

Note that (11) is equal to (10) if $b=\frac{1}{2} v$, and (11) is equal to zero if $b=v$. Thus for p small enough (11) is nonpositive at $b=\frac{1}{2} v$ and at $b=v$, and it is convex in b on $\left(\frac{1}{2} v, v\right]$, which implies that (11) is nonpositive for every $b \in\left(\frac{1}{2} v, v\right]$.

If a bidder of type v has reported v and is suggested to bid low, then he knows that either he faces no opponents (with probability p^{n-1}), or that he was chosen and faces one chosen opponent who bids 0 , low, or high with probabilities $g \pi_{l}, g \pi_{l l}$, and $g \pi_{h l}$, respectively. The expected payoff of this bidder from bidding any $b \in\left(0, \frac{1}{2} v\right]$ is

$$
\begin{aligned}
& \left(\frac{p^{n-1}+g \pi_{l}}{p^{n-1}+g\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)}+\frac{g \pi_{l l}}{p^{n-1}+g\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)} \frac{b}{\frac{1}{2} v}\right) v-b \\
& =\frac{2 p^{n-1} v}{2 p^{n-1}+\frac{1}{2} g} \geq 0
\end{aligned}
$$

If he bids $b \in\left(\frac{1}{2} v, v\right]$ instead, then his payoff is

$$
\begin{aligned}
& \left(\frac{p^{n-1}+g\left(\pi_{l}+\pi_{l l}\right)}{p^{n-1}+g\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)}+\frac{g \pi_{h l}}{p^{n-1}+g\left(\pi_{l}+\pi_{l l}+\pi_{h l}\right)}\left(\frac{b-\frac{1}{2} v}{\frac{1}{2} v}\right)\right) v-b \\
& \quad=\frac{2 p^{n-1} v}{2 p^{n-1}+\frac{1}{2} g}\left(\frac{v-b}{\frac{1}{2} v}\right) \\
& \quad<\frac{2 p^{n-1} v}{2 p^{n-1}+\frac{1}{2} g}
\end{aligned}
$$

If a bidder of type v has reported v and is suggested to bid high, then he knows that he was chosen and faces one chosen opponent who bids low or high, with equal probabilities. Thus the expected payoff of this bidder from bidding any $b \in(0, v]$ is equal to zero.

To summarize, if a bidder of type v truthfully reports his type and follows the recommendations, then he gets a payoff of $\frac{2 p^{n-1} v}{2 p^{n-1}+\frac{1}{2} g}$ when he is suggested to bid low, and zero payoff otherwise. Hence, his ex ante payoff is $2 p^{n-1} v$.

If a bidder of type v has reported 0 , then he is suggested to bid 0 . He knows that he faces no active opponents with probability p^{n-1}; one active opponent who bids low with probability $(n-1)(1-p) p^{n-2}+2 d \pi_{l}$, where $d=$ $\left(1-p^{n-1}-(n-1)(1-p) p^{n-2}\right)$; two active opponents who both bid low, both bid high, or one bids low and another high with probabilities $d \pi_{l l}, d \pi_{h h}$, and $2 d \pi_{h l}$, respectively.

If this bidder bids $b \in\left(0, \frac{1}{2} v\right]$, then his payoff is

$$
\begin{equation*}
\left(p^{n-1}+\left((n-1)(1-p) p^{n-2}+d 2 \pi_{l}\right)\left(\frac{b}{\frac{1}{2} v}\right)+d \pi_{l l}\left(\frac{b}{\frac{1}{2} v}\right)^{2}\right) v-b \tag{12}
\end{equation*}
$$

Note that if $b=0$, then (12) is equal to $p^{n-1} v$ which is smaller than the payoff from truthtelling $2 p^{n-1} v$. If $b=\frac{1}{2} v$ then (12) becomes

$$
\begin{equation*}
\left(p^{n-1}+(n-1)(1-p) p^{n-2}+d\left(2 \pi_{l}+\pi_{l l}\right)\right) v-\frac{1}{2} v \tag{13}
\end{equation*}
$$

Note that (13) is equal to $-\frac{1}{4} v$ if $p=0$, and that (13) is continuous in p. Thus for p small enough (12) is smaller than $2 p^{n-1} v$ at $b=0$ and at $b=\frac{1}{2} v$, and it is convex in b on $\left(0, \frac{1}{2} v\right.$], which implies that (13) is smaller than the payoff from truthtelling $2 p^{n-1} v$ for every $b \in\left(0, \frac{1}{2} v\right]$.

If this bidder bids $b \in\left(\frac{1}{2} v, v\right]$, then his payoff is

$$
\begin{equation*}
\left(p^{n-1}+(n-1)(1-p) p^{n-2}+d\left(2 \pi_{l}+\pi_{l l}\right)+2 d \pi_{h l}\left(\frac{b-\frac{1}{2} v}{\frac{1}{2} v}\right)+d \pi_{h h}\left(\frac{b-\frac{1}{2} v}{\frac{1}{2} v}\right)^{2}\right) v-b \tag{14}
\end{equation*}
$$

Note that (14) is equal to (13) if $b=\frac{1}{2} v$, and (14) is equal to zero if $b=v$. Thus for p small enough (14) is smaller than $2 p^{n-1} v$ at $b=\frac{1}{2} v$ and at $b=v$, and it is convex in b on $\left(\frac{1}{2} v, v\right]$, which implies that (14) is smaller than the payoff from truthtelling $2 p^{n-1} v$ for every $b \in\left(\frac{1}{2} v, v\right]$.

Thus the considered communication rule is a communication equilibrium, and it achieves the desired payoffs.

References

Amann E, Leininger W (1996) Asymmetric all-pay auctions with incomplete information: the two-player case. Games Econom Behav 14:1-18
Antsygina A, Teteryatnikova M (2022) Optimal information disclosure in contests with stochastic prize valuations. Econ Theor. https://doi.org/10.1007/s00199-022-01422-8
Aoyagi M (2003) Bid rotation and collusion in repeated auctions. J Econ Theory 112:79-105
Aumann R (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67-96
Aumann R (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55:1-18
Azacis H, Vida P (2015) Collusive communication schemes in a first-price auction. Econ Theor 58:125-160
Baye M, Hoppe H (2003) The strategic equivalence of rent-seeking, innovation, and patent-race games. Games Econom Behav 44:217-226
Baye M, Kovenock D, de Vries C (1993) Rigging the lobbying process: an application of the all-pay auction. Am Econ Rev 83:289-294
Baye M, Kovenock D, de Vries C (1996) The all-pay auction with complete information. Econ Theor 8:291-305
Benoit J-P, Dubra J (2006) Information revelation in auctions. Games Econom Behav 57:181-205
Bergemann D, Brooks B, Morris S (2017) First-price auctions with general information structures: implications for bidding and revenue. Econometrica 85:107-143
Bergemann D, Morris S (2016) Bayes correlated equilibrium and the comparison of information structures in games. Theor Econ 11:487-522
Bergemann D, Morris S (2019) Information design: a unified perspective. J Econ Lit 57:44-95
Bertoletti P (2016) Reserve prices in all-pay auctions with complete information. Res Econ 70:446-453
Blume A, Board O (2013) Language barriers. Econometrica 81:781-812
Blume A, Heidhues P (2004) All equilibria of the Vickrey auction. J Econ Theory 114:170-177
Camerer C (2003) Behavioral game theory: experiments in strategic interaction. Princeton University Press, Princeton
Chen Z (2019) Information disclosure in contests: private versus public signals, Working paper (available at SSRN 3326462)
Cotter K (1991) Communication equilibria with large state spaces. In: Khan MA, Yannelis NC (eds) Equilibrium theory in infinite dimensional spaces. Studies in economic theory, vol 1. Springer, Berlin, pp 288-299
Dechenaux E, Kovenock D, Sheremeta R (2015) A survey on experimental research on contests, all-pay auctions, and tournaments. Exp Econ 18:609-669
Einy E, Haimanko O, Lagziel D (2022) Strong robustness to incomplete information and the uniqueness of a correlated equilibrium. Econ Theor 73:91-119
Forges F (1990) Universal mechanisms. Econometrica 58:1341-1364
Forges F (1993) Five legitimate definitions of correlated equilibrium in games with incomplete information. Theor Decis 35:277-310

Forges F (2009) Correlated equilibria and communication in games. In: Myers R (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 1587-1596
Garratt R, Tröger T, Zheng C (2009) Collusion via resale. Econometrica 77:1095-1136
Graham D, Marshall R (1987) Collusive bidder behavior at single-object second-price and English auctions. J Polit Econ 95:1217-1239
Haimanko O (2022) Equilibrium existence in two-player contests without absolute continuity of information. Econ Theory Bull 10:27-39
Harbring C (2006) The effect of communication in incentive systems-an experimental study. Manag Decis Econ 27:333-353
Hart S, Mas-Colell A (2013) Simple adaptive strategies: from regret-matching to uncoupled dynamics. World Scientific Series in Economic Theory, vol 4, World Scientific
Hernando-Veciana A, Tröge M (2011) The insider's curse. Games Econom Behav 71:339-350
Hillman A, Riley J (1989) Politically contestable rents and transfers. Econ Polit 1:17-39
Hillman A, Samet D (1987) Dissipation of contestable rents by small numbers of contenders. Public Choice 54:63-82
Hirshleifer J (1989) Conflict and rent-seeking success functions: ratio vs. difference models of relative success. Public Choice 63:101-112
Hwang S-H, Rey-Bellet L (2020) Strategic decompositions of normal form games: zero-sum games and potential games. Games Econ Behav 122:370-390
Ivanov M (2010) Communication via a strategic mediator. J Econ Theory 145:869-884
Kovenock D, Morath F, Münster J (2015) Information sharing in contests. J Econ Manag Strateg 24:570-596
Krishna V, Morgan J (1997) An analysis of the war of attrition and the all-pay auction. J Econ Theory 72:343-362
Lazear E, Rosen S (1981) Rank-order tournaments as optimum labor contracts. J Polit Econ 89:841-864
Lehrer E, Sorin S (1997) One-shot public mediated talk. Games Econom Behav 20:131-148
Lizzeri A, Persico N (2000) Uniqueness and existence of equilibrium in auctions with a reserve price. Games Econom Behav 30:83-114
Lopomo G, Marshall R, Marx L (2005) Inefficiency of collusion at English auctions, B.E. Journals of Theoretical Economics. Contrib Theor Econ 5(1):1-26
Lopomo G, Marx L, Sun P (2011) Bidder collusion at first-price auctions. Rev Econ Des 15:177-211
Marshall R, Marx L (2007) Bidder collusion. J Econ Theory 133:374-402
Marshall R, Marx L (2009) The vulnerability of auctions to bidder collusion. Quart J Econ 124:883-910
McAfee P, McMillan J (1992) Bidding rings. Am Econ Rev 82:579-599
Milgrom P, Stokey N (1982) Information, trade and common knowledge. J Econ Theory 26:17-27
Moulin H, Vial J-P (1978) Strategically zero-sum games: the class of games whose completely mixed equilibria cannot be improved upon. Intern J Game Theory 7:201-221
Myerson R (1982) Optimal coordination mechanisms in generalized principal-agent problems. J Math Econ 10:67-81
Rosenthal RW (1974) Correlated equilibria in some classes of two-person games. Intern J Game Theory 3:119-128
Siegel R (2009) All-pay contests. Econometrica 77:71-92
Siegel R (2014) Asymmetric all-pay auctions with interdependent valuations. J Econ Theory 153:684-702
Szech N (2011) Asymmetric all-pay auctions with two types. University of Bonn, Discussion paper
Tan X (2016) Information revelation in competitions with common and private values. Games Econom Behav 97:147-165
Tullock G (1980) Efficient rent-seeking. In: Buchanan J, Tollison R, Tullock G (eds) Towards a theory of the rent-seeking society. Texas A\&M University Press, College Station, pp 97-112

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: I thank anonymous referees and especially the Guest Editor, Dan Kovenock, for very helpful suggestions. I also thank Maria Goltsman, Sandeep Baliga, Andreas Blume, Roberto Burguet, Ying Chen, Matthew Jackson, Rene Kirkegaard, Val Lambson, Bart Lipman, Stephen Morris, Philip Reny, Roberto Serrano, Itai Sher, Andrzej Skrzypacz, Leeat Yariv and the seminar participants at McMaster University, Simon Fraser University, Université de Montré al, University of Rochester, CETC (Toronto, 2009), IIOC (Vancouver, 2010), and International Game Theory Festival (Stony Brook, 2011) for helpful comments and conversations. In addition I thank Linjie Hao and Dillon Huddleston for research assistance. Financial support from Social Sciences and Humanities Research Council of Canada is gratefully acknowledged (Grant \#410-2010-0333). All remaining errors are mine.
 \boxtimes Gregory Pavlov
 gpavlov@uwo.ca
 1 Department of Economics, Social Science Centre, University of Western Ontario, London, ON N6A 5C2, Canada

[^1]: 1 There are also other reasons to use correlated equilibrium as a solution concept. Correlated equilibrium has arguably more compelling epistemic foundations than Nash equilibrium (Aumann 1987); it is easier for boundedly rational players to learn to play correlated equilibrium than Nash equilibrium (Hart and Mas-Colell 2013). Communication equilibrium is one of the most popular ways of extending the concept of correlated equilibrium to games with incomplete information but not the only one (Forges 1993; Bergemann and Morris 2016).

[^2]: 2 Bertoletti (2016), Lizzeri and Persico (2000), and Siegel (2014) study all-pay auctions with reserve prices.
 3 For example, Graham and Marshall (1987) study collusion in second-price auctions, and McAfee and McMillan (1992) study collusion in first-price auctions.

[^3]: 4 For example, Aoyagi (2003) studies self-enforcing collusion with pre-play communication in repeated auctions.
 5 Lopomo et al. (2005) and Garratt et al. (2009) study self-enforcing collusion without pre-auction side payments, but with a possibility of resale.
 6 See also Azacis and Vida (2015) for related results for the first-price auction with a continuum of bids.
 7 For a survey of other experimental research on contests see Dechenaux et al. (2015).

[^4]: 8 Alternatively one can keep the action set $A_{i}=[0, \infty)$, but this will result in an unnecessary multiplicity of equilibria because there will be multiple possible "inactive" bids.
 9 All considered sets and functions are Borel measurable; all considered probability measures are Borel, with topology of weak convergence.
 10 See Aumann (1974, 1987) and Myerson (1982). Cotter (1991) provides the revelation principle for settings with large action and type spaces.

[^5]: 11 The principal-agent literature often uses a first-order approach for describing an agent's best response. This approach is not going to work here because a bidder's expected payoff is typically discontinuous in own bid.

[^6]: 12 For example, in the second-price auction without the reserve price there are many Nash equilibria: the truthful equilibrium, and infinitely many equilibria involving weakly dominated strategies (Blume and Heidhues 2004). If the bidders correlate their play, then it is possible to sustain the following collusive scheme. Before the auction a designated winner is randomly chosen; during the auction the bidders coordinate on the equilibrium where the designated winner obtains the good for free by submitting a very high bid while the other bidders submit zero bids. See Section V. A in the working paper version of Marshall and Marx (2009).

[^7]: 13 The result in Proposition 2 for the case $r=0$ follows from a more general result, Proposition 6 in Sect.4.1, that allows for incomplete information. However, the proof here is different and more intuitive.

[^8]: 14 An alternative way to finish the proof is to use Theorem 3 from Moulin and Vial (1978), which shows that for any game that is strategically equilvalent to a zero-sum game there exist no "correlation scheme" that improves upon all Nash equilibrium payoffs for both players. The class of "correlation schemes" in Moulin and Vial (1978) includes correlated equilibria, as well as some other joint action plans that require certain commitment on the part of the players.
 15 See example on p. 204 in Moulin and Vial (1978).
 16 Specifically, they formulate the collusive problem as a linear programming problem, and, by discretizing the bid spaces, manage to derive some properties of the dual problem which imply the result.

[^9]: 17 We conjecture that at least for some parameters no other payoffs can be achieved by correlated equilibria, but we have not managed to prove this because of the technical difficulties outlined in the beginning of this section.

[^10]: 18 This follows from Proposition 8 in Sect.4.2. For a characterization of Nash equilibria in the asymmetric cases when there is no reserve price see Baye et al. (1996).

[^11]: 19 The actual correlated equilibrium in Example 2 is slightly more involved: the active bidders are in addition recommended whether to bid high or low, and the probabilities of the mediator's profiles of recommendations are adjusted to ensure incentive compatibility.
 20 It is possible to construct correlated equilibria with asymmetric payoffs, but we do not present them here. We do not claim that the upper bound on the payoff in the presented symmetric correlated equilibria is the highest one could achieve.

[^12]: 21 There exist other results on Bayesian Nash equilibria of the all-pay auction with incomplete information, but many of them are about the case of interdependent valuations which is not covered in this paper. See, for example, Krishna and Morgan (1997), Lizzeri and Persico (2000), Siegel (2014).
 22 For example, the results of Siegel (2014) imply that the Bayesian Nash equilibrium exists and is unique when there are finitely many strictly positive values for every bidder.

[^13]: 23 If bidder i is uncertain about his valuation v_{i}, then a transformation of his payoff according to formula (1) is likely to change his best response, because in general $E\left[1 / v_{i}\right] \neq 1 / E\left[v_{i}\right]$. For the case of correlated values it is unclear how part (i) of the deviational strategy described in the previous paragraph has to be adjusted in order to guarantee a bidder his Bayesian Nash equilibrium payoff.

[^14]: 24 Lopomo et al. (2011) check the robustness of the result by studying numerically other environments with two bidders.
 25 Azacis and Vida (2015) also present several results on the optimal collusive schemes in the first-price auction with omniscient mediator who is assumed to know the bidders values. In such a model the bidders can generally do better than in the Bayesian Nash equilibrium without communication: the mediator selectively reveals information on the bidders' values to induce asymmetric beliefs which lead to less aggressive bidding. Bergemann et al. (2017) also study related constructions.

[^15]: 26 Here is a sketch of the argument. If following every message the posterior probability that bidder 1 is of type 0 is not higher than r, then after every message either type of bidder 1 gets zero payoff in the continuation Bayesian Nash equilibrium. Then the prior belief p_{1} must also be not higher than r, and hence the Bayesian Nash equilibrium payoffs of the game without communication are the same. If the posterior beliefs following some messages are above r, then it is optimal for bidder 1 of type 1 to send messages that induce the highest possible belief that bidder 1's type is 0 . However, since the equilibrium posterior beliefs must reflect the strategy of bidder 1 , the highest posterior belief cannot be greater than the prior p_{1}. Hence, the posterior beliefs after every message must be equal to the prior, which implies payoff equivalence with the Bayesian Nash equilibrium of the game without communication.
 27 It can be shown that an analogous result holds for the case when $p \in\left[\frac{r}{v}, 1\right]$ and r is sufficiently high. The proof is long, and thus not included in the paper.
 28 The inefficiency of Bayesian Nash equilibrium is easy to observe when $p \approx 0$ and $r \approx v$. Efficiency requires that each bidder with value v submits an active bid, and thus the sum of the ex ante expected bids

[^16]: Footnote 28 continued
 must be at least $2(1-p) r \approx 2 v$. However, the bidders' gross ex ante payoff is only $v\left(1-p^{2}\right) \approx v$, which gives an impossibilty.

[^17]: 29 Another implication is that the Nash equilibrium prediction is robust to the bidders' having arbitrary correlated beliefs about payoff-irrelevant states of the world, as long as these beliefs are consistent with the common prior (Aumann 1974).
 30 Such models include all-pay auctions with general cost functions (Siegel 2009) as well as models of contests where the determination of the winner stochastically depends on the amount of resources committed by the participants, i.e. rent-seeking contests and models of conflict (Tullock 1980; Hirshleifer 1989), tournaments between workers (Lazear and Rosen 1981), R\&D contests (Baye and Hoppe 2003), etc.

 31 Relatedly, Einy et al. (2022) identified classes of games with a unique correlated equilibrium which coincides with the unique Nash equilibrium.

[^18]: 32 For example, Ivanov (2010) investigates how strategic mediators can be used in sender-receiver games.
 33 One can use the existing results on implementation of correlated and communication equilibria without a mediator for general games. See Forges (2009) for a survey. The constructions in these papers are for finite sets of actions, but they can be adapted to implement the correlated and communication equilibria constructed here.
 34 It also seems unlikely that there may exist other interesting correlated and communication equilibria that can be implemented by direct unnmediated communication before the all-pay auction. In the environment with complete information such pre-play communication only achieves payoffs that are in the convex hull of the Nash equilibrium payoffs of the game without communication (Forges 1990). We conjecture that it is impossible to improve upon the Bayesian Nash equilibria using only such pre-play communication in the all-pay auction with incomplete information as well.
 35 Blume and Board (2013) introduced the idea that instead of communication via a noisy communication channel it is possible to use direct communication when there is uncertainty about the ability of the players to understand some messages.

[^19]: 36 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is because

 $$
 u_{1}+u_{2}=\frac{\left(v^{2} u_{1}+r^{2} u_{2}\right)+\left(r^{2} u_{1}+v^{2} u_{2}\right)}{v^{2}+r^{2}} \leq \frac{2 r^{2}}{v^{2}+r^{2}}<1
 $$

 where the first inequality follows from $v^{2} u_{i}+r^{2} u_{j} \leq r^{2}$.
 37 Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the opponent bids r.

[^20]: 39 If there are multiple Bayesian Nash equilibria, then every communication equilibrium is interim payoff equivalent to some Bayesian Nash equilibrium. We do not include this observation in Proposition 6 because we are not aware of any examples of multiple Bayesian Nash equilibria in this setting.

[^21]: 40 It is straightforward to verify that $\widehat{\pi} \in[0,1]$ and that the entries in table: (i) sum up to one; and (ii) are nonnegative (since $r>p v$).
 41 Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the opponent bids r.

[^22]: 42 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative for p sufficiently small (since $g=\frac{2}{n}$ when $p=0$).

