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COLLUSION VIA RESALE

BY RODNEY J. GARRATT, THOMAS TRÖGER, AND CHARLES Z. ZHENG1

The English auction is susceptible to tacit collusion when post-auction interbidder
resale is allowed. We show this by constructing equilibria where, with positive probabil-
ity, one bidder wins the auction without any competition and divides the spoils by opti-
mally reselling the good to the other bidders. These equilibria interim Pareto-dominate
(among bidders) the standard value-bidding equilibrium without requiring the bidders
to make any commitment on bidding behavior or postbidding spoil division.
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1. INTRODUCTION

IN PRIVATE-VALUE ENGLISH AUCTIONS that ban resale, it is a dominant strat-
egy for each participant to bid up to her use value. With resale allowed, value
bidding remains an equilibrium outcome, but there is no dominant strategy.
Resale opens the possibility that some bidders will optimally drop out at a price
below their use values. They prefer to let a competitor win and buy from her
in the resale market. The existence of non-value-bidding equilibria is impor-
tant because the celebrated advantages of the English auction, in particular
efficiency, are based on value bidding and because resale is possible in most
applications.

In this paper we construct a family of nonvalue-bidding equilibria for an
English auction that allows interbidder resale. Such equilibria exist in any in-
dependent private value environment (symmetric or asymmetric) for any num-
ber of bidders (Proposition 1). Each equilibrium in this family is identified by
the choice of a designated bidder and a threshold type, below which all bidders,
except the designated bidder, bid zero. All bidders with types above the thresh-
old bid up to their values. In cases where the designated bidder wins the initial
auction and has a sufficiently low type, she will offer the item for resale instead
of consuming it. Because the determination of the designated bidder does not
depend upon her type and the resale market retains information asymmetry,
the final outcome may be inefficient.

Since a designated bidder may win the initial auction at a low price, such
equilibria provide an opportunity for a form of tacit collusion among the bid-
ders. By using a publicly observed randomizing device (or sunspot) to choose
the designated bidder, the surplus can be distributed in a way that makes every
bidder of every type better off than under the value-bidding equilibrium; that

1We thank Subir Bose, Paul Heidhues, George Mailath, Leslie Marx, Tymofiy Mylovanov, Greg
Pavlov, Larry Samuelson, and three anonymous referees for helpful comments. We are partic-
ularly grateful to Dan Levin for suggesting that we investigate the collusive properties of our
equilibrium construction.
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is, the value-bidding equilibrium is interim (bidder) Pareto dominated (Propo-
sition 2).2 The recommendation made by the sunspot device is not binding.
Once the sunspot picks a designated bidder, it is in the interest of each bidder
to bid accordingly in the initial auction based on the expectation that others
will follow their assigned roles.

Previous models of collusion in second-price and English auctions (e.g.,
Graham and Marshall (1987), Mailath and Zemsky (1991), Marshall and Marx
(2007)) rely on pre-auction communication, in which every colluding bidder
reports her type to the bidding ring. By communicating, the colluding bidders
determine side payments and designate a single bidder to participate in the
auction and win at a low price. These papers specify mechanisms that achieve
efficient collusion as an equilibrium. However, the proposed use of pre-auction
communication is problematic because it is usually illegal and participating
bidders risk being detected. Moreover, the proposed collusive schemes require
the nondesignated bidders in the bidding ring to bid below their values in the
actual auction. Without resale, such bidding strategies are weakly dominated,
and bidders may not be willing to play them. To make the expectation of a
dominated strategy credible, the colluding bidders might require a commit-
ment device.3

By introducing the possibility of resale after an English or second-price auc-
tion, our paper rationalizes collusion without pre-auction communication or
dominated strategies. Instead of pre-auction communication of private infor-
mation, a publicly observable sunspot selects a designated bidder in a manner
commonly known to the colluding bidders, and the final owner of the good is
decided through a resale mechanism. Before the auction, no one commits to
what she will do in the auction or at resale. During the auction, colluding bid-
ders do not bid up to their values; however, we prove that such strategies are
not weakly dominated given the option for resale (Appendix B). The winner
of the auction chooses a resale mechanism that is optimal for her given the
posterior beliefs after the auction, and only after the initial auction has ended
can she commit to the rules of her resale mechanism.

McAfee and McMillan (1992, p. 587) noted that in practice a bidding ring’s
own “knockout auction” often happens after rather than before the legitimate
auction. This practice is well represented in our equilibria.

2Readers who are familiar with U.S. litigation history might draw some parallels between our
proposed use of a sunspots variable and the famous phases-of-the-moon bidding ring that was
operated by electrical equipment suppliers in the 1950s. The phases-of-the-moon scheme earned
its designation because it involved an explicit two-week rotation to determine the low bidder. See
Smith (1961).

3Sustaining collusion in first-price auctions is more difficult than in second-price auctions be-
cause nondesignated bidders have a strict incentive to overbid the designated bidder whose bid in
the main auction is below their value; see McAfee and McMillan (1992) and Marshall and Marx
(2007).
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Our Pareto-improving equilibria are, in contrast to the previously proposed
collusive schemes, not ex post efficient.4 This is consistent with an impossibility
result in Lopomo, Marshall, and Marx (2005), which shows that inefficiency is a
quite general feature of Pareto-improving equilibria in English auctions with-
out pre-auction communication. From the viewpoint of antitrust authorities,
inefficient collusive equilibria are important precisely because of the distor-
tion; efficient collusion involves merely a pure transfer from the seller to the
bidders.

Blume and Heidhues (2004) completely characterized the Bayesian Nash
equilibria for the second-price auction with three or more bidders with a com-
mon type space. These equilibria are valid for English auctions and have the
same bidding structure as our equilibria. However, because there is no resale
market, the Blume–Heidhues equilibria are in dominated strategies. More-
over, in some environments none of these equilibria Pareto-dominates the
value-bidding equilibrium, even if we give everyone a chance to be the desig-
nated bidder through sunspot coordination. This is because high-value bidders
strictly prefer the value-bidding equilibrium; we show this for all symmetric en-
vironments with strictly concave value distributions (Proposition 3). But with
resale, there always exists an equilibrium that makes every type of every bidder
strictly better off than the value-bidding equilibrium.

In contrast to much of the earlier literature on auctions with resale, our
model allows for any number of asymmetric bidders. With multiple bidders
at the resale stage, the optimal resale mechanism typically is no longer a take-
it-or-leave offer, as often assumed, but is an optimal auction as derived by
Myerson (1981). A technical novelty of our paper is that we avoid complicated
explicit computations of bidders’ resale payoffs. We identify several structural
properties of the resale continuation game that facilitate our perfect Bayesian
equilibria for the entire auction-with-resale game. These structural properties
do not appear to be specific to the Myerson optimal auction, suggesting that
our qualitative results extend to other forms of the resale market.5

Our result that the value bidding equilibrium is interim (bidder) Pareto dom-
inated is based on two regularity properties of resale that are satisfied in our
equilibria. The properties ensure that even when the threshold is arbitrarily
close to zero, a nonvanishing fraction of the bidder types below the thresh-
old still engage in actual resale trade. The proof begins with the observation
that our equilibria interim Pareto-dominate the value-bidding equilibrium if
the prior type distributions are uniform. Then we extend this dominance rela-

4The payoff gains in our equilibria relative to value bidding can still be substantial (see Table I,
Section 5).

5For instance, the period-2 seller may be restricted to use a second-price or English auction
with an optimal reserve price, or the period-2 seller may use an English auction with the right to
reject all bids (Haile (2003)), or, in two-bidder environments, a random draw may specify which
bidder has the right to propose a resale price (Calzolari and Pavan (2006)).
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tion to arbitrary type distributions provided that the thresholds in our equilib-
ria are sufficiently small. Sufficiently small thresholds allow us to approximate
the expected payoffs by the ones in the uniform-distribution case. The afore-
mentioned regularity properties imply that a bidder’s gain from trade at resale
outweighs the error of the approximation.

The threshold-bidding strategies in our equilibria are built upon Garratt and
Tröger (2006) for English and second-price auctions. However, there are non-
trivial differences. In Garratt and Tröger, the bidder who will become the re-
seller has no private information and the other bidders have identical prior
value distributions. In contrast, in this paper every bidder has private informa-
tion and bidders’ value distributions can differ. Our extension of the equilib-
rium construction to the case of asymmetric bidders is made possible by con-
ditioning the designated bidder’s bid on the identities of the bidders who stay
in the auction. This information is not available in a sealed-bid format. Hence,
in environments with three or more bidders, our equilibrium construction ap-
plies to second-price auctions only under an additional symmetry assumption
(Remark 3).

Recent works by Lebrun (2007) and Hafalir and Krishna (2008) compared
revenue in first- and second-price auctions with resale in two-bidder models.
Hafalir and Krishna showed that in a two-bidder asymmetric model there exists
a “general revenue ranking” in favor of first-price auctions, provided bidders
play the value-bidding equilibrium in the second-price auction. Lebrun showed
that, depending on the selected equilibria, this ranking does not necessarily
hold when behavior (mixed) strategies are allowed. Our construction of equi-
libria for second-price auctions that interim Pareto-dominate value bidding
does not challenge the revenue ranking established by Hafalir and Krishna.
Because the value-bidding equilibrium is efficient, it yields a seller revenue
that is necessarily greater than in any interim Pareto-dominating equilibrium.

Collusive equilibria have been constructed for multiunit auctions by Milgrom
(2000), Brusco and Lopomo (2002), and Engelbrecht-Wiggans and Kahn
(2005); however, resale does not play a role.6 In these multiunit environments
bidders signal their preferences in early rounds and then optimally abstain
from bidding on other bidders’ preferred items. Interestingly, the open aspect
of the ascending English auction is essential in their construction, as it is here
in the case of ex ante asymmetric bidders.

2. MODEL

We consider environments with n≥ 2 risk-neutral bidders pursuing a single
indivisible private good. Bidder i ∈N := {1� � � � � n} has a privately known use
value, or type, ti ∈ Ti = [0� ti] (ti > 0) for the good. The type space is denoted by

6Pagnozzi (2007) analyzed multiunit auctions with resale in a complete-information model.
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T := T1 ×· · ·×Tn.7 From the viewpoint of the other bidders, ti is independently
distributed according to a probability distribution with cumulative distribution
function Fi, called prior belief, with support Ti and Lipschitz continuous positive
density fi. We consider a two-period interaction, which begins after each bidder
i has privately observed her use value ti.

In period 1, the good is offered via an English auction that is modeled as
in Milgrom and Weber (1982). The auctioneer continuously raises the current
price beginning at 0; Remark 1 extends the equilibrium construction to an Eng-
lish auction that starts at a positive price. Initially, all bidders are “in” or “ac-
tive.” As the current price rises, each bidder can irreversibly “drop out” at any
point. When somebody drops out, other bidders may react by dropping out at
the same price. Dropout decisions are publicly observed. The auction ends at
the first current price where at most one bidder is active. The ending current
price is called the auction price. If one bidder is active at the end, this is the
auction winner; if all active bidders drop out at the auction price, there is a tie
among the previously active bidders and any tieing bidder becomes the winner
with equal probability.

The auction winner either consumes the good in period 1, thereby ending
the game, or becomes the period-2 seller. The period-2 seller proposes a sales
mechanism to the losing bidders, called period-2 buyers. A sales mechanism is
any game form to be played by the period-2 buyers. The mechanism is played
if it is accepted by all period-2 buyers; otherwise, the period-2 seller consumes
the good in period 2.8 Observe that the period-2 seller faces no restrictions:
she can choose an arbitrary sales mechanism. No bidder can pre-commit in
period 1 to use a particular mechanism in period 2.

Every bidder’s discount factor is δ ∈ (0�1]. From the viewpoint of period 1,
the payoff of type ti of bidder i is ti(q1 + δq2)− p1 − δp2, where qk (k= 1�2)
denotes the probability of her consuming the good in period k and pk de-
notes her net expected monetary payment in period k. From the viewpoint of
period 2, the bidders only care about their period-2 payments and period-2
allocation probabilities.

2.1. Histories, Strategies, Beliefs, and Period-2 Outcome

A nonterminal history lists the observed dropout decisions and the current
price at any point before the period-1 auction ends. The set of nonterminal
histories where bidder i ∈N is active is denoted Hi. A terminal history lists the
observed dropout decisions up to the end of the auction, the auction price, and
the winner. The set of terminal histories is denoted Hterm. The set of all histories
is denoted H = H1 ∪ · · · ∪ Hn ∪ Hterm.

7We shall use boldface letters to denote multidimensional quantities.
8We assume that there is no further resale after the reseller’s resale mechanism. However, for

certain prior beliefs, this assumption can be weakened to allow the winner of the resale mecha-
nism to offer further resale à la Zheng (2002).
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A bidding strategy profile (βi(· | h))i∈N�h∈Hi
determines, for any bidder i ∈N ,

any history h ∈ Hi, and any type ti ∈ Ti, the current price b= βi(ti | h) at which
bidder i plans to drop out. We call b the bid of type ti of bidder i at h. If b is
smaller than or equal to the current price at h, then b is interpreted as dropping
out immediately at h. Observe that if at h a bidder other than bidder i bids
b′ < b, then the plan to drop out at b becomes irrelevant once the current
price b′ is reached.

A resale decision profile is a vector (γh)h∈Hterm , where γh(t) equals resale if
type t of the winner offers the good for resale at the terminal history h and
where γh(t) equals consume if the winner consumes the good in period 1.
A period-1 belief profile (Ah)h∈H assigns to each history h a probability distri-
bution Ah on T that represents the (common) belief at h about the bidders’
types. A period-2 belief profile (Gh)h∈Hterm assigns to each terminal history h a
probability distribution Gh on T that represents the (common) belief about the
bidders’ types if the winner offers the good for resale.

Using the revelation principle, we can describe a period-2 outcome as a vec-
tor (Pi(t)� Qi(t))i∈N�t∈T such that, for any bidder i and type profile t ∈ T, the
number Pi(t) denotes the expected net period-2 monetary transfer of bidder i
and Qi(t) denotes the probability that bidder i consumes the good in period 2,
where

∑
k∈N Qk(t)= 1 and

∑
k∈N Pk(t)= 0.

2.2. The Equilibrium Concept

An equilibrium consists of a bidding profile (βi(· | h))i∈N�h∈Hi
, a resale-

decision profile (γh)h∈Hterm , a period-1 belief profile (Ah)h∈H, a period-2
belief profile (Gh)h∈Hterm , and a family of period-2 outcomes (Pi�h(t)�
Qi�h(t))i∈N�t∈T�h∈Hterm with the following properties:

(a) For all h ∈ Hterm, the period-2 outcome (Pi�h(t)�Qi�h(t))i∈N�t∈T is induced
by a perfect Bayesian equilibrium of the period-2 continuation game, given the
period-2 seller from terminal history h and the (commonly known) period-2
belief Gh.

(b) The period-1 belief profile (Ah)h∈H obeys Bayes’ rule with respect to the
bidding profile (βi(· | h))i∈N�h∈Hi

.
(c) For all h ∈ Hterm, j ∈N , and tj ∈ Tj , if bidder j with type tj is the period-1

winner at history h, then γh(tj) equals resale (resp., consume) if tj is strictly
smaller (resp., greater) than j’s discounted period-2 payoff, given the period-2
belief Gh and the expected period-2 outcome (Pi�h(t)�Qi�h(t))i∈N�t∈T.

(d) The period-2 belief profile (Gh)h∈H obeys Bayes’ rule with respect to
the period-1 belief profile (Ah)h∈H and the resale-decision profile (γh)h∈Hterm .

(e) For all i ∈ N , ti ∈ Ti, and h ∈ Hi, the bid βi(ti | h) maximizes the ex-
pected payoff of type ti of bidder i at the history h, given the belief Ah, provided
that everyone else abides by the bidding profile, that bidder i abides by her
bidding strategy after additional bidders drop out, and that the resale-decision
profile and family of period-2 outcomes are implemented.
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We construct equilibria where period-1 beliefs and period-2 beliefs are sto-
chastically independent across bidders, and where any belief about bidder i’s
(i ∈N) type is derived from the prior belief and the information that her type
lies in a (possibly degenerate) interval Ji ⊆ Ti. Let J denote the set of interval
products J = J1 × · · · × Jn ⊆ T. We identify any belief with an element of J .
That is, we will treat J variably as a product of intervals or as a cumulative dis-
tribution function on T and will treat Ji variably as an interval or a cumulative
distribution function on Ti.

3. THE PERIOD-2 CONTINUATION GAME

In view of equilibrium condition (a), we select a perfect Bayesian equilibrium
of the period-2 continuation game for any period-2 seller j ∈N and any belief
J = J1 × · · ·× Jn ∈ J . We use a well known selection: the mechanism proposed
by the period-2 seller is Myerson’s (1981) auction that is optimal for period-2
seller j based on the period-2 belief profile J, given the assumption that resale
after period 2 is impossible.9 Denote the period-2 outcome implemented by
this auction by (Pj�Ji (t)�Q

j�J
i (t))i∈N�t∈T for any (j�J) specified above.10

Notation is needed to describe the properties of the Myerson optimal auc-
tion outcome that are used in the following analysis. For all i ∈ N , let J−i =∏

k �=i Jk denote the marginal distribution induced by J on T−i := ∏
k �=i Tk. The

probability that type ti ∈ Ti of bidder i consumes the good in period 2 (by keep-
ing it if i= j and obtaining it if i �= j) is denoted

qij(ti�J)=
∫

T−i
Q
j�J
i (t)dJ−i(t−i)�

and her period-2 expected payoff is denoted

lij(ti�J)= tiqij(ti�J)−
∫

T−i
P
j�J
i (t)dJ−i(t−i)�

For the period-2 seller, we will use the shortcuts qj(tj�J) = qjj(tj�J) and
wj(tj�J)= ljj(tj�J).

9Our period-2 environment differs from Myerson’s environment insofar as the period-2 seller
may be privately informed about her type. This plays no role because, by assumption, the period-2
seller is not a player in her sales mechanism, so that the period-2 buyers’ beliefs about the seller’s
type have no impact on their behavior. If we did allow mechanisms where the period-2 seller is
a player, the Myerson optimal auction outcome would still be a “strong solution” as defined by
Myerson (1983); see Mylovanov and Tröger (2008).

10Observe that the period-2 outcome includes payments and allocation probabilities for types
not in J. The period-2 seller believes that types ti /∈ Ji occur with probability 0. We assume that any
type ti > supJi obtains the good with the same probability as type sup Ji and any type ti < infJi
obtains the good with probability 0.
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A well known implication of the incentive compatibility of the period-2 out-
come, proved via the envelope theorem in integral form (Milgrom and Se-
gal (2002)), is the following envelope formulas: for all ti� t ′i ∈ Ti (t ′i < ti) and
tj� t

′
j ∈ Tj (t ′j < tj),

lij(ti�J)− lij(t ′i�J)=
∫ ti

t′i
qij(x�J)dx�(1)

wj(tj�J)−wj(t ′j�J)=
∫ tj

t′j
qj(x�J)dx�(2)

Period-2 payments can be defined such that the ex post participation conditions
are satisfied: for all t ∈ T, j ∈N , and i �= j,

tj ≤ tjQj�J
j (t)− Pj�Jj (t)�(3)

0 ≤ tiQj�J
i (t)− Pj�Ji (t)�(4)

If there are expected gains from trade between the period-2 seller and all buy-
ers, then by using an optimal auction, the period-2 seller j captures a nonzero
share of the gains: for all tj ∈ Tj ,

[∀i ∈N \ {j}�maxJi > tj] 
⇒ wj(tj�J) > tj�(5)

A further straightforward property of the Myerson optimal auction outcome
is that the period-2 seller’s period-2 payoff is continuous in the period-2 belief
about her type (in fact, the payoff is independent of the belief). To state this
property, let [0�x] × J−j denote the belief that bidder j’s type is at most x and
other bidders’ types are in J−j . For all j ∈N , tj ∈ Tj , and J ∈ J , the map

x �→wj(tj� [0�x] × J−j) is continuous on Tj�(6)

The next property—that a bidder’s period-2 payoff as a buyer is never larger
than as a seller—follows from the fact that the bidder’s type is a lower bound
for her period-2 payoff as a seller and an upper bound for her period-2 payoff
as a buyer. For all i ∈N , ti ∈ Ti, j ∈N \ {i}, and J ∈ J ,

wi(ti�J) ≥ lij(ti�J)�(7)

Another property of the Myerson optimal auction outcome is proved in Ap-
pendix A: each bidder as a period-2 seller consumes the good with a weakly
higher probability than obtaining it as a period-2 buyer, given the same
period-2 beliefs.

LEMMA 1: Let i ∈N , ti ∈ Ti, j ∈N \ {i}, and J ∈ J . Then

qi(ti�J) ≥ qij(ti�J)�(8)
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Our equilibrium construction in the next section applies to any resale mar-
ket that satisfies properties (1)–(8). None of these properties appears specific
to the Myerson optimal auction outcome. In particular, (5) simply reflects the
facts that the period-2 seller has some bargaining power and there is some re-
sale trade. Property (7) is implied by (3) if n= 2; otherwise, (7) essentially pro-
vides an upper bound on an auction loser’s ability to extract rents if two other
bidders trade the good in period 2. Property (8) reflects the basic intuition that
private information leads to less trade than efficiency requires.

4. EQUILIBRIA FOR ENGLISH AUCTIONS WITH RESALE

In this section, we construct a family of equilibria for the English auction
with resale. In each equilibrium, one of the bidders, say bidder 1, is com-
monly known to be the designated bidder of the period-1 auction. Bidding
strategies depend upon a threshold t∗, which can take on any value in the in-
terval (0�mini∈N ti]. Every bidder with type above t∗ bids her own type. All
designated-bidder types below t∗ bid more than 0 and not more than t∗. Any
other bidder with a type below t∗ drops out at the beginning of the auction. If
someone with type above t∗ wins, resale does not occur. Otherwise, the desig-
nated bidder wins at price 0; if her type is sufficiently low, she offers the good
for resale in period 2 according to a continuation equilibrium described in Sec-
tion 3. Since the selection of the designated bidder does not depend upon her
type and informational asymmetries remain at resale, these equilibria are inef-
ficient, contrary to the value-bidding equilibrium of English auctions.11

Before we present the equilibria (Proposition 1), we state some results that
are used to specify the period-1 strategy for bidder 1. First, we establish that
bidder 1’s resale decision is defined by a nonzero cutoff (Lemma 2) such that
lower types of bidder 1 prefer offering resale to immediate consumption and
higher types have the reverse preference. Second, for each bidder i �= 1, we
define a price at which type t∗ is indifferent between winning the period-1 auc-
tion and waiting for resale, and we show that these prices are strictly positive
(Lemma 3). These prices become the bids for all types below t∗ of bidder 1 who
offer resale. Fix a threshold t∗ > 0. For any x ∈ T1, let J∗

x = [0�x]× [0� t∗]n−1 de-
note the belief resulting from the prior belief and the information that bidder
1’s type is below x and the other bidders’ types are below t∗.

To find a cutoff type between consumption and offering resale, let

τ∗ := sup{x ∈ T1|δw1(x�J∗
x) > x} if δ < 1�(9)

We define τ∗ = t1 if δ= 1.

11Haile (1999) proved that when resale after an English or second-price auction is allowed, the
efficient value-bidding equilibrium remains valid.



1104 R. J. GARRATT, T. TRÖGER, AND C. Z. ZHENG

LEMMA 2: Let t∗ be a threshold. Then 0< τ∗ < t∗ if δ < 1. For all t1 ∈ T1,

t1 ≥ δw1(t1�J∗
τ∗) if t1 > τ

∗�(10)

t1 ≤ δw1(t1�J∗
τ∗) if t1 < τ

∗�(11)

τ∗ → t∗ as δ→ 1� δ �= 1�(12)

For all bidders i �= 1, let b∗
i denote the price that makes type t∗ of bidder

i indifferent between (i) winning the auction at price b∗
i and consuming the

good, and (ii) participating in a resale market where bidder 1 is the period-2
seller and the period-2 belief is J∗

τ∗ :

b∗
i := t∗ − δli1(t∗�J∗

τ∗)�(13)

The following lemma provides bounds for b∗
i .

LEMMA 3: Let t∗ be a threshold. Then 0< b∗
i < t

∗ for all bidders i �= 1.

The bidding strategy for designated-bidder types below t∗ is as follows. If her
type is below τ∗, then at any history h ∈ H1 she bids maxi∈S1(h) b

∗
i , where S1(h)

denotes the set of bidders other than 1 who are active at the history h, and she
will offer resale if she wins. If her type is between τ∗ and t∗, then she bids t∗
and she does not offer resale if she wins.

PROPOSITION 1: For any threshold t∗, there exists an equilibrium with proper-
ties (i)–(iv).

(i) For any history h ∈ H1, type t1 ∈ T1 of bidder 1 bids

β1(t1 | h)=

⎧⎪⎨
⎪⎩

max
i∈S1(h)

b∗
i if t1 ≤ τ∗,

t∗ if τ∗ < t1 ≤ t∗,
t1 if t1 > t∗.

(14)

(ii) For all bidders i �= 1 and any history h ∈ Hi, type ti ∈ Ti of bidder i bids

βi(ti | h)=
{

0 if ti ≤ t∗,
ti if ti > t∗.(15)

(iii) Let ĥ ∈ Hterm denote the history where all bidders other than bidder 1 have
dropped out at the beginning of the auction. Bidder 1’s resale decision at history ĥ
is

γĥ(t1) :=
{

Resale if t1 ≤ τ∗,
Consume if t1 > τ∗.(16)
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(iv) At history ĥ, the period-2 outcome is the Myerson optimal auction outcome
given the period-2 seller (bidder 1) and the period-2 belief [0� τ∗] × [0� t∗]n−1.

Any equilibrium that satisfies properties (i)–(iv) is called a t∗-equilibrium.
Proposition 1 is proved in Appendix A. Here we explain heuristically, for the

case of δ < 1, why a bidder i �= 1, who is not the designated bidder, would abide
by the equilibrium strategy of dropping out of the auction if her type is below
the threshold t∗. Bidder i can deviate in at least two ways. Either she can try to
outbid the designated bidder (bidder 1) and consume the good upon winning
it or she can try to outbid bidder 1 and offer resale upon winning.

To explain why both kinds of deviation are unprofitable, let us suppose that
all bidders other than bidder i have types below t∗ and that bidder 1’s type is
below τ∗. Otherwise, bidder imust bid at least t∗ to win the auction and cannot
resell at a profit. If bidder i manages to outbid bidder 1 and consumes the
good upon winning, then her payoff is equal to ti − b∗

i , because bidder 1 bids
up to b∗

i against bidder i and everyone else quits at zero price. This payoff is
represented by the slope-1 straight line, labeled X , in Figure 1.

If bidder i plays the equilibrium strategy of dropping out of the auction and
trying to buy the good at resale, then her expected payoff is equal to δli1(ti�J∗

τ∗);
that is because bidder 1 wins the good at zero price and hence the post-auction
belief is J∗

τ∗. This expected payoff is represented by the curve labeled Y in
Figure 1. Note that curve Y and line X intersect at the threshold t∗. This is
because bidder 1’s highest bid b∗

i against a deviant bidder i, defined by (13),
makes bidder i of type t∗ indifferent between consuming now and buying at
resale.

An important point is that curve Y is everywhere less steep than line X , so
that bidder i with types below t∗ prefers abiding by the equilibrium and waiting
for resale to outbidding bidder 1 and consuming the good. This follows from
the envelope formula (1): When ti changes from t∗, the payoff from consuming
now, ti − bi(t

∗), changes at the rate 1, while the payoff from buying at resale,
δli1(ti�J∗

τ∗), changes at the rate δqi1(ti�J∗
τ∗) < 1.

FIGURE 1.—X , consume now; Y , buy at resale; Z, win now and offer resale.
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Now consider the deviation where bidder i outbids the designated bidder
and offers the good for resale upon winning. If bidder i manages to do that,
then her role in period 2 is switched from a bidder to a seller and the post-
auction beliefs J∗

τ∗ are unchanged. Her expected payoff at the start of period 2
will be equal towi(ti�J∗

τ∗), so her present expected payoff from such a deviation
is equal to δwi(ti�J∗

τ∗)− b∗
i . This payoff is represented by the curve labeled Z

in Figure 1. Note that curve Z is below curveX for all ti ≥ t∗. This is because a
reseller whose type is above t∗ cannot profit from resale, since everyone else’s
type is below t∗.

A crucial observation is that, for ti < t∗, the curve Z is everywhere steeper
than the curve Y . As Z is below Y at t∗, that means Z is always below Y for
types below t∗, that is, bidder i with types below t∗ would rather be a period-2
buyer than a period-2 seller. To verify these relationships, recall the definition
of b∗

i given in (13). We have

Z∗ := δwi(t
∗�J∗

τ∗)− b∗
i

≤ wi(t
∗�J∗

τ∗)− b∗
i

= t∗ − b∗
i

= δli1(t
∗�J∗

τ∗)=: Y ∗�

By the envelope formulae (1) and (2), ∂wi
∂ti
(ti�J∗

τ∗)= qi(ti�J∗
τ∗) and ∂li1

∂ti
(ti�J∗

τ∗)=
qi1(ti�J∗

τ∗). By the inequality (8), qi(ti�J∗
τ∗) ≥ qi1(ti�J∗

τ∗). Thus, the expected
payoff from winning now and offering resale, δwi(ti�J∗

τ∗)− b∗
i , decreases from

level Z∗ faster than the expected payoff from buying at resale, δli1(ti�J∗
τ∗), de-

creases from level Y ∗. As Z∗ ≤ Y ∗, the claim is established.
We provide some remarks on Proposition 1.

REMARK 1: Proposition 1 can be extended to the case where the English
auction in period 1 has a reserve price r > 0. Amend the English auction as
follows. The auction starts with a current price lower than r (say zero price)
that corresponds to “no sale.” If someone drops out at no sale, then the price
clock pauses to give others a chance to drop out. Once no more bidders drop
out at no sale, the price clock jumps to the reserve price r.

An equilibrium can be constructed for any threshold t∗ > r, provided the
discount factor is sufficiently close to 1. Let t̂ ∈ T1 be the type of bidder 1 such
that her expected payoff (for the entire auction-resale game) is zero if she wins
the good at price r and offers the good for resale, given the belief that the types
in [0� t∗] of other bidders participate in the resale market. Suppose δ is suffi-
ciently close to 1, so that t̂ < r. According to the equilibrium, bidder 1 drops
out at no sale if and only if her type is below t̂. Once bidder 1 has dropped out
at no sale, other bidders play the value-bidding equilibrium; if bidder 1 does
not drop out at no sale, then the bidders’ subsequent actions are analogous to
the equilibria described in Proposition 1, where “dropping out at zero price”
is replaced by “dropping out at no sale.” Resale occurs given the belief that
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(i) bidder 1’s type is distributed on [t̂� τ] for some τ ∈ (r� t∗) and (ii) the other
bidders’ types are distributed on [0� t∗].

REMARK 2: The t∗-equilibrium construction makes essential use of the
transparent dynamic nature of an English auction, because the designated bid-
der’s dropout price depends on the set of the other bidders who have not
dropped out (the upper branch of (14)). This dependence is important in our
construction because, by (13), bidders drawn from different distributions need
different prices b∗

i to be kept obedient to the threshold t∗. For exactly this rea-
son, the t∗-equilibrium construction does not generally extend to second-price
auctions. The construction does extend if b∗

2 = · · · = b∗
n, which holds if bidders 2

to n are ex ante symmetric.

REMARK 3: The t∗-equilibria are not the only equilibria that differ from the
value-bidding equilibrium. There also exist “extreme equilibria,” where bid-
der 1’s bid is so high that all types of all other bidders find it optimal to drop
out at the beginning of the auction.12 Extreme equilibria are conceptually sim-
pler than t∗-equilibria; however, there are practical reasons why extreme equi-
libria might not be played. First, in an extreme equilibrium, the good is always
sold at zero price at the initial auction. This would make a regulator suspicious
of collusion, which the bidders may want to avoid. Second, if low-type bidders
have a budget constraint that prevents them from staying active up to very high
prices, then a designated bidder’s bidding strategy in an extreme equilibrium
is not credible.13 Third, extreme equilibria cannot, generally, be used to obtain
the interim Pareto-dominance property described below (see Section 5.1 for
an example).

REMARK 4: One may drop the assumption that the period-2 seller can pre-
vent further resale transactions. Suppose that, beginning with the period-2
seller, each current owner of the good designs a sales mechanism, knowing
that the next owner will design her own sales mechanism, and so on. This
amounts to using Zheng’s (2002) repeated-resale game to describe period 2 of
our model. For a certain class of period-2 beliefs,14 Zheng’s result shows that
there exists a period-2 perfect Bayesian continuation equilibrium such that the
final outcome is still the Myerson optimal auction outcome intended by the
period-2 seller (though this outcome is achieved via intermediate sales mech-
anisms different from Myerson’s). Accordingly, for certain prior beliefs, our
t∗-equilibrium construction extends to the repeated-resale market without any

12Zheng (2000, Section 5.2) constructed an extreme equilibrium in a second-price-auction-type
mechanism with reserve prices. See also Garratt and Tröger (2006, Section 4).

13Brusco and Lopomo (2008) made this point previously in a no-resale model.
14Mylovanov and Tröger (2009) characterized the class of beliefs such that Zheng’s construc-

tion applies.
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change; this is true, in particular, for symmetric environments (i.e., where prior
beliefs are identical across bidders). One may conjecture that the properties
(1)–(8) hold for the repeated-resale market for a larger class of prior beliefs,
but proving this hinges on first solving Zheng’s repeated-resale game for the
corresponding beliefs.

5. THE INTERIM PARETO DOMINANCE OF COLLUSION

We assume that a sunspot (à la Shell (1977) and Cass and Shell (1983))
with n equally likely states is commonly observed before the period-1 auction
starts (and after the bidders have been privately informed). This extends the
game so that actions can depend on the realization of the sunspot state. Given
any strategy profile, the payoff of any type of a given bidder is defined via the
expectation over the n sunspot states. We call an equilibrium in the extended
game Pareto improving if it interim Pareto-dominates the value-bidding equi-
librium, that is, if every type of every bidder is strictly better off than in the
value-bidding equilibrium. We show that Pareto-improving equilibria exist in
any environment.

For any threshold t∗, we define a t∗-collusive equilibrium: if the realized
sunspot state is j = 1� � � � � n, then a t∗-equilibrium is played, with bidder j tak-
ing the role of the designated bidder. Clearly this constitutes an equilibrium.

PROPOSITION 2: The t∗-collusive equilibria are Pareto improving for all t∗ suf-
ficiently close to 0.

Note the generality of this result. A Pareto-improving equilibrium exists in
any symmetric or asymmetric environment; in particular, strong bidders can
gain from colluding with weak bidders. Moreover, the discount factor does not
have to be close to 1; the result applies to any nonzero discount factor.

The proof of Proposition 2 utilizes two regularity properties of the period-2
outcome when the period-2 belief is concentrated on types close to 0. These
properties, which are stated in Lemma 5 and Lemma 6, do not appear to be
specific to the Myerson optimal auction outcome; the conclusion of Proposi-
tion 2 holds for any resale market outcome that satisfies these properties.

The first step toward the proof of Proposition 2 is to observe that it is suffi-
cient to focus the payoff comparison on the types in the interval [0� t∗].

LEMMA 4: In a t∗-collusive equilibrium, if type t∗ of a given bidder is strictly
better off than in the value-bidding equilibrium, then all types above t∗ of this
bidder are strictly better off.

PROOF: Consider any type ti ≥ t∗ of a bidder i ∈ N . Her payoff in the t∗-
collusive equilibrium can be different from her value-bidding equilibrium pay-
off only in the event that the highest type among the other bidders is less than
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or equal to t∗ (t(1)−i ≤ t∗). Then bidder i’s payoff in the value-bidding equilib-
rium is ti − t(1)−i and her payoff in the t∗-collusive equilibrium is either ti − n−1

n
b∗
i

or ti − n−1
n
t∗, depending on whether the sunspot variable selects a designated

bidder j �= i with type tj < τ∗ or not. Either way, the payoff difference is inde-
pendent of ti. Q.E.D.

The idea behind using t∗ close to 0 in Proposition 2 is to make the interval of
relevant types [0� t∗] small, so that approximations of payoff comparisons can
be obtained using first-order Taylor expansions of the prior belief distributions,

Fi(x)= fi(0)x+ hi(x)(17) (x≥ 0� i= 1� � � � � n)�

where hi(x)/x→ 0 as x→ 0.
The Taylor expansions (17) are exact (hi(x) = 0) if the priors are (possibly

asymmetric) uniform distributions. The uniform-priors example captures the
rough idea of why Proposition 2 is correct. In the value-bidding equilibrium
with uniform priors, it is well known that the payoff of type ti ≤ t∗ of bidder i
is

U val�uniform
i (ti)=

∫ ti

0

∏
k �=i
Fk(x)dx=

∏
k �=i
fk(0)

tni
n
�(18)

For the t∗-collusive equilibrium payoff with uniform priors, denoted
U∗�uniform
i (ti), we obtain a lower bound by not counting the gains from resale

trade:

U∗�uniform
i (ti)≥ 1

n

∏
k �=i
fk(0)(t∗)n−1ti�(19)

because with probability 1/n, bidder i is the designated bidder, in which case
she gets the good for free if all others have valuations below t∗. Clearly, (18)
and (19) imply

U∗�uniform
i (ti) > U

val�uniform
i (ti) for all ti ∈ (0� t∗)�(20)

The strict inequality in (20) also holds at ti = 0 and ti = t∗, because in a t∗-
collusive equilibrium, type 0 makes a profit as a period-2 seller with positive
probability and type t∗ gets an information rent as a period-2 buyer with pos-
itive probability. Thus, in the uniform-priors example, t∗-collusive equilibria
are Pareto improving for all t∗. Using the Taylor expansion (17), we generalize
this result to arbitrary prior distributions and small t∗ via several lemmas that
are proved in Appendix A.

For all i ∈ N , let τ∗i be defined analogously to τ∗, with bidder i instead of
bidder 1 taking the designated-bidder role. Lemma 5 states that, for small t∗,
a nonvanishing fraction of the designated-bidder types below t∗ offer the good
for resale on the equilibrium path of a t∗-equilibrium.
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LEMMA 5: There exists 0< θ< 1 such that, for all t∗ sufficiently close to 0,

∀i ∈N: τ∗i > θt∗�(21)

The proof uses the fact that the period-2 seller, if she believes that each
buyer’s type belongs to [0� t∗], is free to make a take-it-or-leave-it fixed-price
offer at t∗/2 to any buyer. This lower bound on what the period-2 seller can
achieve ensures that all types that are sufficiently small relative to t∗ offer re-
sale, thus bounding τ∗i from below.

For all i ∈N , let J∗i denote the belief resulting from the prior belief and the
information that bidder i’s type is below τ∗i and the other bidders’ types are
below t∗. Lemma 6 states that, given the period-2 belief J∗i for any small t∗, a
nonvanishing fraction of the period-2 buyer types below t∗ buy the good with a
nonvanishing probability; if δ= 1, the probability is conditional on the seller’s
type being below t∗.

LEMMA 6: There exist 0< ξ < 1 and ε > 0 such that for all t∗ sufficiently close
to 0,

∀i ∈N�j ∈N \ {i}� ti ∈ [ξt∗� t∗]: ε <

⎧⎨
⎩
qij(ti�J∗j) if δ < 1,
qij(ti�J∗j)
Fj(t∗)

if δ= 1.
(22)

The intuition behind this result is that because the conclusion (22) holds for
any t∗ in the uniform-priors example, one can use the Taylor expansion (17)
to show the conclusion for arbitrary priors and small t∗. The proof uses the
assumption that the prior densities are Lipschitz continuous. This implies that
the virtual valuation functions (Myerson (1981)) for the period-2 beliefs about
the period-2 buyers’ types are strictly increasing if t∗ is small. According to
the Myerson optimal auction outcome, the good is then resold to the period-2
buyer with the highest virtual valuation, unless the period-2 seller’s type is
higher. This allocation rule yields explicit formulas for the buyer-allocation
probabilities qij(ti�J∗j). The lower bound (22) is obtained via approximations
for the virtual valuation functions that are obtained using (17).

The next lemma provides an approximation result for payoffs in the value-
bidding equilibrium.15

LEMMA 7: The payoff of type ti ≤ t∗ of bidder i ∈N in the value-bidding equi-
librium is

U val
i (ti)=

∏
k �=i
fk(0)

1
n
ti
n + O((t∗)n)�

15For any k ≥ 0, we will use O((t∗)k) to denote any function h(x� t∗) (or h(t� t∗) or h(ti� t∗))
such that supx∈[0�t∗] |h(x� t∗)|/(t∗)k → 0 as t∗ → 0.
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The next lemma states that, given the period-2 belief J∗i for any small t∗, a
nonvanishing fraction of the period-2 seller types below t∗ sell the good with a
nonvanishing probability.

LEMMA 8: Let θ be as in Lemma 5. There exist 0< ξ < θ and ε > 0 such that,
for all t∗ sufficiently close to 0,

∀j ∈N� tj ∈ [0� ξt∗]: qj(tj�J∗j) < 1 − ε�(23)

To prove this, we observe that the upper bound (23) follows from the lower
bound (22) because buyer- and seller-allocation probabilities add up to 1 in
expectation over all types.

LetUb
ij(ti) denote the payoff of type ti ≤ t∗ of bidder i ∈N in a t∗-equilibrium

where j �= i is the designated bidder. Using the lower bound on the trading
probability (22) and the envelope formula (1), we obtain a lower bound for her
payoff.

LEMMA 9: Let ξ and ε be as in Lemma 6. For all sufficiently small t∗ and
ti ∈ [0� t∗],

Ub
ij(ti)≥ δεmax{0� ti − ξt∗}Fj(θt∗)

∏
k/∈{i�j}

Fk(t
∗)�

LetUs
i (ti) denote the payoff of type ti ≤ t∗ of bidder i ∈N in a t∗-equilibrium

where i is the designated bidder. Using the upper bound on the no-trade prob-
ability (23) and the envelope formula (2), we obtain a lower bound for her
payoff.

LEMMA 10: Let ξ and ε be as in Lemma 8. For all sufficiently small t∗ and
ti ∈ [0� t∗],

Us
i (ti)≥ (ti + δεmax{0� ξt∗ − ti})

∏
k �=i
Fk(t

∗)�

Let U∗
i (ti) denote the payoff of type ti ≤ t∗ of bidder i ∈N in a t∗-collusive

equilibrium. Combining Lemma 9 and Lemma 10, we get, for all sufficiently
small t∗ and ti ∈ [0� t∗],

U∗
i (ti) ≥ 1

n
(ti + δεmax{0� ξt∗ − ti})

∏
k �=i
Fk(t

∗)(24)

+ n− 1
n

δεmax{0� ti − ξt∗}Fj(θt∗)
∏
k/∈{i�j}

Fk(t
∗)
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(17)=
(

1
n
ti + 1

n
δεmax{0� ξt∗ − ti} + n− 1

n
δεmax{0� ti − ξt∗}θ

)
(25)

·
(∏
k �=i
fk(0)(t∗)n−1 + O((t∗)n−1)

)

=
∏
k �=i
fk(0)g

(
ti

t∗

)
(t∗)n + O((t∗)n)�(26)

where

g(x)= 1
n
x+ 1

n
δεmax{0� ξ− x} + n− 1

n
δεmax{0�x− ξ}θ

(x ∈ [0�1])�
Because g(0) > 0, g(1) > 1/n, and x > xn if 0< x< 1,

∀x ∈ [0�1]: g(x) >
xn

n
�

Hence, combining (26) with Lemma 7 gives

U∗
i (ti)−U val(ti)

(t∗)n
≥

∏
k �=i
fk(0) min

x∈[0�1]

(
g(x)− xn

n

)
︸ ︷︷ ︸

>0

+O(1)�

Hence, for sufficiently small t∗,

min
ti∈[0�t∗]

(U∗
i (ti)−U val(ti)) > 0�

This completes the proof of Proposition 2.
We provide some remarks on Proposition 2.

REMARK 5: The uniform-priors example shows that the gains from playing
a Pareto-improving equilibrium can be quite large. Table I shows the gains to a
bidder with type t∗ = 0�9 in an environment with Fi (i ∈N) uniform on [0�1],
for various numbers of bidders n. The gains to type t∗ are the minimum gains
over all types in this example.

REMARK 6: Proposition 2 extends to an English auction with a small reserve
price. This follows from Remark 1, by continuity. For larger reserve prices r,
the question is whether bidders can collude so that the payoff of any bidder
type above r is larger than in the value-bidding equilibrium with reserve price
r (where bidders with types below r abstain). We have three results for environ-
ments where the prior beliefs Fi (i ∈N) are uniform on [0�1]. First, if n = 2,
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TABLE I

Fi(t)= t, t∗ = 0�9

n Uval
i (0�9) U∗

i (0�9) % Increase

2 0.405 0.50625 25
5 0.1181 0.19043 61.24

10 0.03487 0.06277 80.01

then a Pareto improving equilibrium exists for any reserve price below 1. Sec-
ond, if n≥ 4, then a Pareto-improving equilibrium exists if the optimal reserve
price under value bidding, 1/2, is used. Third, a Pareto-improving equilibrium
exists for any reserve price arbitrarily close to 1 if n is sufficiently large.

Proposition 2 establishes that the bidders can always achieve some, possi-
bly small, Pareto improvement over value bidding. This raises two questions.
First, is the restriction to small t∗ needed for this result? Second, is resale trade
needed?

5.1. Not All t∗-Collusive Equilibria Are Pareto Improving

In this section we provide an example showing that the Pareto improvement
can break down if t∗ is not sufficiently small. We consider a symmetric two-
bidder environment without discounting (δ= 1). Let t∗ = 1.16 We will construct
a prior belief F := F1 = F2 with support [0�1] such that the payoff of type t∗ = 1
of any bidder in a 1-collusive equilibrium is smaller than in the value-bidding
equilibrium.17 Hence, by continuity, a positive mass of types prefers value bid-
ding.

Let t̃ denote a random variable with cumulative distribution function F . In
the value-bidding equilibrium, type 1 of any bidder obtains the payoff 1 − E[t̃],
where E[·] denotes the expected-value operator. In a 1-collusive equilibrium,
her payoff is

1
2

+ 1
2
(
1 − E[p∗(t̃)])�

16The example can be easily generalized to show that for any t∗ > 0 there exists an F such that
a t∗-collusive equilibrium is not Pareto improving.

17Obtaining a Pareto improvement remains impossible if arbitrary probabilities are allowed
for the sunspot states. Let u1 and u2 denote the two bidders’ type-t∗ payoffs in a t∗-equilibrium.
Let uval denote the type-t∗ payoff in the value-bidding equilibrium. Let σ denote the sunspot
probability that bidder 1 is the designated bidder. If (u1 + u2)/2< uval, then we cannot have that
both bidder 1 is better off (σu1 + (1 − σ)u2 ≥ uval) and bidder 2 is better off ((1 − σ)u1 + σu2 ≥
uval). To see this, add the inequalities.
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where p∗(t) (t ∈ [0�1]) denotes an optimal resale price of type t of any bidder
given the period-2 belief [0�1] about the other bidder. Thus, type 1 strictly
prefers the value-bidding equilibrium if

E[p∗(t̃)]> 2E[t̃]�(27)

We construct a distribution F such that (27) holds. F is piecewise linear with a
single kink at some point α ∈ (0�1/3). We compute an explicit solution for the
resale price function p∗. This allows us to verify (27). For all t ∈ [0�1], let18

F(t) :=

⎧⎪⎨
⎪⎩

1 − α
α

t if 0 ≤ t ≤ α,

1 − α+ α

1 − α(t − α) if α≤ t ≤ 1.

Straightforward calculations show that E[t̃] = α.
Let t ∈ (0�1). To find the optimal resale price p∗(t) for a type-t seller, ob-

serve that p = p∗(t) maximizes the period-2 payoff π(p� t) := (p − t)(1 −
F(p)) (written net of own type t) among all p ∈ [0�1].

Suppose that p∗(t) < α. Because p∗(t) > t > 0, the first-order condition

0 = ∂

∂p
π(p� t)

∣∣∣∣
p=p∗(t)

= 1 − 1 − α
α

(2p∗(t)− t)

holds. This implies p∗(t)= α
2(1−α) + t

2 . Using p∗(t) < α, we find

t <
α

1 − α�(28)

Comparing the payoff obtained from p∗(t) with the payoff obtained from the
price p= (1 + t)/2 contradicts the optimality of p∗(t):

π(p∗(t)� t)= α

4(1 − α)
(

1 − 1 − α
α

t

)2
(28)
<

α

4(1 − α)(1 − t)2 = π(p� t)�

Hence, p∗(t) ∈ [α�1]. For all p ∈ (α�1),

∂

∂p
π(p� t)= α

1 − α(1 − 2p+ t)�

18To simplify the exposition, the example uses a distribution with a discontinuous density.
There exists an approximating distribution with a Lipschitz continuous density such that the con-
clusion of the example still holds. In fact, the conclusion holds for any distribution function on
[0�1] that is sufficiently close, in the L1 topology on densities, to the distribution in the example.
This follows from Berge’s theorem of maximum because in the example all nonzero types have a
unique optimal resale price.
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Because π(·� t) is strictly concave on [α�1], the first-order condition 0 =
∂
∂p
π(p� t) implies

p∗(t)= 1 + t
2
�

Now (27) follows because

E[p∗(t̃)] =
∫ α

0

1 + t
2

1 − α
α

dt +
∫ 1

α

1 + t
2

α

1 − α dt

= 1 + α
2

α<1/3
> 2α= 2E[t̃]�

In this example, even though the 1-collusive equilibrium does not Pareto-
dominate value bidding, a Pareto-dominating t∗-collusive equilibrium still ex-
ists by Proposition 1.

5.2. There May Be No Pareto Improvement Without Resale

As pointed out by Blume and Heidhues (2004), the second-price auction
without resale has equilibria (in dominated strategies) with bidding profiles
similar to our t∗-equilibria. Given any t∗ ≥ 0, there exists a no-resale t∗-
equilibrium in which bidders whose use values are above t∗ bid their use val-
ues, all bidders except a designated bidder bid 0 if their use values are be-
low t∗, and the designated bidder bids t∗ if her use value is below t∗. These
equilibria remain valid if the second-price auction is replaced by the English
auction. In fact, bidding in any of our t∗-equilibria converges to the no-resale
t∗-equilibrium with designated bidder 1 in the limit δ→ 0 because τ∗ → 0.

Is it possible to construct a Pareto-improving equilibrium without resale
based on the no-resale t∗-equilibria, using a sunspot as in the model with
resale? In many environments it is not possible because high-type bidders
are better off with value bidding. To state this result, label the no-resale t∗-
equilibrium with designated bidder i by (i� t∗) ∈ N × R+. For any probability
distribution D on N × R+, call the equilibrium obtained by playing a no-resale
equilibrium according to the distribution D a no-resale collusive equilibrium.

PROPOSITION 3: Suppose that the prior belief is strictly concave and identical
for all bidders. Then in any no-resale collusive equilibrium there exists a bidder,
the highest possible type of which is strictly worse off than in the value-bidding
equilibrium.

PROOF: Let F = Fi (i ∈N) denote the prior belief. Let t denote the highest
possible type. Let uval denote the payoff of type t in the value-bidding equilib-
rium. For any no-resale equilibrium (i� t∗) ∈ N × R+ and any k ∈ N , let ui�t

∗
k

denote the payoff of type t of bidder k.
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We first show that

uval >
1
n

n∑
k=1

ui�t
∗

k �(29)

Because the designated bidder gets the good for free if all others have types
below t∗,

1
n

n∑
k=1

ui�t
∗

k = F(t∗)n−1 1
n
t∗ +

∫ t

t∗
F(t)n−1 dt�

It is well known that

uval =
∫ t

0
F(t)n−1 dt�

Strict concavity of F implies

∀0< t < t∗:
F(t)

t
>
F(t∗)
t∗

�

Therefore,

uval −
∫ t

t∗
F(t)n−1 dt >

F(t∗)n−1

(t∗)n−1

∫ t∗

0
tn−1 dt = F(t∗)n−1

(t∗)n−1

1
n
(t∗)n

= 1
n

n∑
k=1

ui�t
∗

k −
∫ t

t∗
F(t)n−1 dt�

implying (29).
In a no-resale collusive equilibrium based on a probability distribution D,

the payoff of type t of bidder k ∈N is

uDk :=
∫
ui�t

∗
k dD(i� t∗)�

Suppose that the highest possible type of each bidder is at least as well off as
in the value-bidding equilibrium: uDk ≥ uval for all k ∈N . Then

uval ≤ 1
n

n∑
k=1

uDk =
∫

1
n

n∑
k=1

ui�t
∗

k dD(i� t∗)
(29)
< uval�

a contradiction. Q.E.D.
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The proof works by showing that, in any no-resale collusive equilibrium, the
payoff of the highest type averaged over all bidders is smaller than her value-
bidding payoff. Hence, somebody must be worse off in any no-resale collusive
equilibrium. Of course, by continuity, the result can be extended to types close
to the highest possible type.

Blume and Heidhues (2004) showed that in environments where the priors
(Fi)i∈N have a common support and there are at least three bidders, the no-
resale t∗-equilibria with t∗ ranging in [0�maxi∈N t̄i] are the only equilibria of
the second-price auction without resale.19 Thus, the set of no-resale collusive
equilibria spans all of the possible equilibrium utility profiles in this environ-
ment. Hence we have the following additional result.

COROLLARY 1: Suppose that the prior belief is strictly concave and identical for
all of the n ≥ 3 bidders. Then, assuming no resale, the value-bidding equilibrium
of the second-price auction is not Pareto dominated by any equilibrium of the
second-price auction with a public randomization device.

APPENDIX A: PROOFS OF PROPOSITION 1 AND THE LEMMAS USED TO
ESTABLISH PROPOSITION 2

PROOF OF LEMMA 1: Following Myerson (1981, pp. 68–69), we define
weakly increasing functions ci :Ti → R (i ∈N) such that, given any type profile
t ∈ T, the period-2 seller j ∈N optimally assigns the good with equal probabil-
ity to any one of the buyers in the set20,21

{
i ∈N \ {j}|tj < ci(ti)= max

k∈N\{j}
ck(tk)

}
�

and consumes the good if the set is empty. Hence, for all i ∈ N , ti ∈ Ti, and
j ∈N \ {i},

qij(ti�J) ≤ Pr[ci(ti) > t̃j] · Pr
[
ci(ti)≥ max

k∈N\{i�j}
ck(t̃k)

]
�(30)

19They also showed that with any positive reserve price only the value-bidding equilibrium
(t∗ = 0) remains. This is in contrast to the “with resale” case where t∗-equilibria with t∗ > 0 are
robust to reserve prices (Remark 1).

20Writing “tj < · · ·” instead of “tj ≤ · · ·,” we deviate from Myerson’s original definition while
retaining optimality for the seller.

21The domain of ci in Myerson’s original definition is Ji . For all i ∈N , we extend ci to Ti via
ci(ti)= −∞ if ti <minJi and ci(ti)= ci(maxJi) if ti >maxJi; compare footnote 10.
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where (t̃1� � � � � t̃n) denotes a random vector with distribution J. Similarly,

qi(ti�J)= Pr
[
ti ≥ max

k∈N\{i}
ck(t̃k)

]
(31)

= Pr[ti ≥ cj(t̃j)] · Pr
[
ti ≥ max

k∈N\{i�j}
ck(t̃k)

]
�

From Myerson’ construction, ci(ti) ≤ ti and ci(t̃j) ≤ t̃j . Hence, (30) and (31)
yield (8). Q.E.D.

PROOF OF LEMMA 2: For any x, the function φ(x� t) := δw1(t�J∗
x) − t is

Lipschitz continuous in t, where the Lipschitz constant can be chosen inde-
pendently of x by (2). By (6), for any t the function φ(x� t) is continuous
in x. Hence, φ is continuous. By (5), φ(0�0) > 0. Moreover, for all t ≥ t∗,
w1(t�J∗

t )= t by (3) and (4); hence, φ(t� t)≤ 0, with the strict inequality hold-
ing for δ < 1. Thus, φ(τ∗� τ∗)= 0, τ∗ > 0, and, if δ < 1, then τ∗ < t∗.

To prove (10) and (11), observe that (2) together with q1(s�J∗
τ∗)≤ 1 (s ∈ T1)

implies that φ(τ∗� t) is weakly decreasing in t.
To prove the limit result (12), consider the correspondence

ψ :δ �→ {t ∈ [0� t∗]|φ(t� t)≤ 0}�
Because φ is continuous, ψ is upper hemicontinuous. From (5), ψ(1) = {t∗}.
Hence, τ∗ = minψ(δ)→ minψ(1)= t∗ as δ→ 1, δ �= 1. Q.E.D.

PROOF OF LEMMA 3: By Lemma 2, τ∗ > 0. Hence, (3) and (4) imply
li1(t

∗�J∗
τ∗) < t

∗, so (13) implies 0 < b∗
i . By (13), the remaining claim b∗

i < t
∗

is implied by the claim li1(t
∗�J∗

τ∗) > 0, which we establish now. Suppose that
li1(t

∗�J∗
τ∗)≤ 0. Then li1(ti�J∗

τ∗)≤ 0 for all ti < t∗ by (1). However, li1(ti�J∗
τ∗)≥ 0

by (4). Hence, li1(ti�J∗
τ∗)= 0. Thus, qi1(ti�J∗

τ∗)= 0 by (1). Hence, Q
1�J∗

τ∗
i (t)= 0

for almost all t ∈ J∗
τ∗ . Thus, P

1�J∗
τ∗

i (t) = 0 by (4). Because probabilities sum up
to 1 and payments sum up to 0, Q

1�J∗
τ∗

1 (t) = 1 and P
1�J∗

τ∗
1 (t) = 0 for almost all

t ∈ J∗
τ∗ . Hence, w1(t1�J∗

τ∗)= t1 for almost all t1 ≤ τ∗, contradicting (5). Q.E.D.

PROOF OF PROPOSITION 1: We begin with a complete description of
period-1 beliefs and period-2 beliefs. For any i ∈ N and p ≥ 0, let Ha

i�p de-
note the set of histories with current price p (equal to auction price if the
history is terminal) where bidder i is active; let Hd

i�p denote the set of his-
tories where bidder i has dropped out at price p (while the current price is
greater than or equal to p). Observe that, for any i ∈ N , these sets cover the
set of all histories: H = ⋃

p≥0(Ha
i�p ∪ Hd

i�p). Hence, to describe the equilibrium
period-1 belief profile (Ah)h∈H, it is sufficient to specify, for all i ∈ N , p ≥ 0,
and h ∈ Ha

i�p ∪ Hd
i�p, the period-1 belief Ah�i about bidder i at history h. In the
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TABLE II

PERIOD-1 BELIEFS ABOUT BIDDER i AT
ANY HISTORY WHERE BIDDER i HAS

DROPPED OUT

i’s Dropout Ah�i at
i Price p h ∈ Hd

i�p

≥ 2 ≤ t∗ [0� t∗]
≥ 1 ∈ (t∗� ti] {p}
≥ 1 > ti {ti}
= 1 < t∗ [0� τ∗]
= 1 = t∗ [τ∗� t∗]

following Tables II–IV, we shall identify the posterior distributions Ah�i and
Gh�i with their supports.

Let i ∈N . At the initial history h0, all bidders are active and Ah0�i = Fi. Ta-
ble II provides information on period-1 beliefs about bidder i at any history
where bidder i has dropped out at price p.

Table III provides information on period-1 beliefs about bidder i at any non-
initial history where bidder i is active. Let Ĥ denote the set of histories such
that bidder 1 is active while, according to β1, she would not be active if her type
were less than or equal to τ∗.

Equilibrium condition (b) can be verified in a straightforward manner using
(14), (15), Table II, and Table III. For example, if bidder 2 drops out at the
initial history h0, then (15) implies the period-1 belief [0� t∗]. The event that
she drops out at a price in (0� t∗] has probability 0; hence, Bayes’ rule allows an
arbitrary period-1 belief such as [0� t∗].

Next we specify period-2 beliefs for any terminal history h ∈ Hterm. Let
ω(h) ∈N denote the winner at the terminal history h. Period-2 beliefs about
losing bidders are identical to the beliefs at the end of the auction, because the

TABLE III

PERIOD-1 BELIEFS ABOUT BIDDER i AT
ANY NONINITIAL HISTORY WHERE

BIDDER i IS ACTIVE

Current Ah�i at
i Price p h ∈ Ha

i�p

≥ 2 ≤ t∗ [t∗� ti] if h �= h0

≥ 1 ∈ [t∗� ti] [p� ti]
≥ 1 > ti {ti}
= 1 < t∗ [τ∗� t1] if h ∈ Ĥ

T1 if h /∈ Ĥ
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TABLE IV

PERIOD-2 BELIEFS ABOUT THE PERIOD-1 WINNER AND THE RESALE-DECISION PROFILE

Auction Gh�i at h ∈ (Ha
i�p∪Hd

i�p)∩Hterm,
γh(ti)=

{
Resale if ti ≤ x
Consume if ti > xi Price p i=ω(h)

≥ 2 ≤ t∗ if h ∈ Ha
i�p [0� τh′ ] x= τh′

if h ∈ Hd
i�p [0� τh] x= τh

≥ 1 ∈ (t∗� ti] Any belief Any optimal x < p
≥ 1 > ti {ti} Any optimal x
= 1 ≤ t∗ [0� τ∗] x= τ∗

decision whether to offer the good for resale is not made by the losing bidders:

Gh�i = Ah�i for all h ∈ Hterm and i �=ω(h)�
In the no-discounting case δ= 1, the same equation Gh�i = Ah�i is assumed for
the winner i = ω(h) and γh(ti) = Resale, so that equilibrium conditions (c)
and (d) are clearly satisfied.

Suppose that δ < 1. Consider a terminal history h where any bidder i ≥ 2
wins at a price p≤ t∗, that is, h ∈ (Ha

i�p ∪ Hd
i�p)∩ Hterm and i=ω(h). As in the

proof of Lemma 2, there exists τh ∈ (0� t∗) such that

δwi(τh�Gh)= τh if Gh�i = [0� τh]�
Table IV specifies, for any δ < 1, information on the period-2 beliefs about the
period-1 winner and the resale-decision profile, where h′ can be any history in
(Ha

i�p ∪ Hd
i�p)∩ Hterm.

Equilibrium condition (d) can be verified using Table IV. To understand the
row with h′, observe that at history h ∈ Ha

i�p, the belief about bidder i is [t∗� ti]
by Table III. According to γh, no type in [t∗� ti] chooses Resale at h. Hence,
Bayes’ rule allows an arbitrary period-2 belief such as [0� τh′ ]. Verifying equi-
librium condition (d) for the next row is analogous to Lemma 2.

To verify equilibrium condition (d) for the row with Any belief, observe that
by Table II losing bidders are believed to have types less than or equal to p,
and by the second row of Table III the winner is believed to have a type greater
than or equal to p. Because none of the winning types chooses Resale, Bayes’
rule allows for any belief.

To verify equilibrium condition (d) for the next row, observe that either
γh(ti) = Resale or γh(ti) = Consume. In the Resale case, Gh�i = {ti} follows
from Ah�i = {ti} (the third row of Table III) by Bayes’ rule. In the Consume
case, the event that bidder i offers resale has probability 0, so Bayes’ rule al-
lows for any period-2 belief.

To verify equilibrium condition (d) for the last row of Table IV, we distin-
guish two cases. If Ah�1 ∈ {T1� [0� τ∗]}, then, according to γh, Bayes’ rule im-
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plies Gh�1 = Ah�1 ∩ [0� τ∗] = [0� τ∗]; if Ah�1 ∈ {[τ∗� t1]� [τ∗� t∗]}, then the event
that bidder 1 chooses Resale has probability 0, so Bayes’ rule allows for any
belief, such as Gh�1 = [0� τ∗].

The proof of equilibrium condition (c) for the first two rows of Table IV is
analogous to the corresponding argument in the proof of Lemma 2. To verify
equilibrium condition (c) for the row with Any belief, observe that type p of
the winner strictly prefers Consume because δ < 1 and the highest type among
the losing bidders is less than or equal to p by Table II. The exact value of the
optimal cutoff type x in this row and the next one plays no role. Equilibrium
condition (c) for the last row of Table IV follows from Lemma 2.

Equilibrium condition (a) follows by construction of the Myerson optimal
auction outcome because all beliefs in Table IV belong to J .

To verify equilibrium condition (e), write b′ �h�i�ti b if, at history h, the ex-
pected payoff of type ti of bidder i when she bids b′ is not smaller than when she
bids b, given that other bidders stick to their candidate equilibrium strategies
from h onward and bidder i sticks to her candidate equilibrium strategy after
additional bidders drop out. We write b′ �h�i�ti b if b′ �h�i�ti b and b�h�i�ti b

′. We
will sometimes omit the lower indices.

First we consider bidder 1 types above the threshold t∗:

∀h ∈ H1� t1 ≥ t∗� b≥ 0: t1 �h�1�t1 b�(32)

We prove (32) for the initial history h= h0; other histories are treated similarly.
Fix b≥ 0. One of the Events E1–E4 occurs; in each event, the payoff from bid
t1 is not lower than from bid b.

EVENT E1—Some Bidder Not Equal to 1 Bids Less Than min{b� t1}: Then
the bid b leads to the same ending history (thus, same payoff) as the bid t1,
because bidder 1’s bid at the initial history h0 becomes irrelevant.

EVENT E2—All Bidders Not Equal to 1 Bid Greater Than b: Then the high-
est type among the bidders not equal to 1 is some t ′ > max{b� t∗}. With dis-
counting (δ < 1), the bid b yields the payoff 0, because by Table IV the winner
consumes the good. Without discounting (δ = 1), the good is offered for re-
sale, but the bidders’ period-2 payoffs add up to at most max{t1� t ′} (equal to
the highest type among all bidders) and the winner obtains a period-2 payoff
of greater than or equal to t ′ by (3), implying that bidder 1 obtains from bid b
a payoff of less than or equal to max{t1 − t ′�0} by (4). But the bid t1 yields a
payoff equal to max{t1 − t ′�0}, because bidder 1 pays t ′ if she wins. Hence, t1 is
weakly better than b.

EVENT E3—All Bidders Not Equal to 1 Bid Greater Than min{b� t1} and the
Minimum Bid Among These Bidders Is t ′ ≤ b: Then t1 < b. Hence, t1 < t ′ ≤ b
and the highest type among the bidders not equal to 1 is t ′ > t∗. The bid b
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of bidder 1 becomes irrelevant once the current price t ′ is reached, because a
bidder has dropped out. Either bidder 1 wins at price t ′ or, given her candidate
equilibrium strategy (14), she drops out at price t ′. In both cases, payoffs are
bounded due to (3) and (4). If she wins, then the bidders’ period-2 payoffs add
up to at most t ′; hence bidder 1’s payoff is less than or equal to 0 due to the
auction price t ′. If she loses at price t ′, then her payoff is 0. In any case, the bid
b yields a payoff less than or equal to 0, so that the bid t1 is weakly better.

EVENT E4 —At Least One Bidder Not Equal to 1 Bids min{b� t1} and All
Others Bid More: The probability of E4 is positive (and hence E4 is payoff-
relevant) only if b= 0. If all bidders not equal to 1 bid 0, then bidder 1’s type
t1 ≥ t∗ is the highest among all bidders, implying that bidder 1’s payoff from
the bid b= 0 is less than or equal to t1 (whether or not she wins the tie at 0),
so that the bid t1, which yields payoff t1, is weakly better. If some bidders not
equal to 1 bid more than 0, then the highest type among bidders not equal to 1
is some t ′ > t∗, implying that bidder 1’s payoff from bid 0 is less than or equal to
max{t1 − t ′�0} by (3) and (4), while her payoff from bid t1 equals max{t1 − t ′�0}.
This completes the proof of (32).

For bidder 1 types below the threshold, any bid between 0 and the threshold
is optimal,

∀h ∈ H1� t1 ≤ t∗� b ∈ (0� t∗]� b′ ≥ 0: b�h�1�t1 b
′�(33)

The proof of (33) uses similar arguments as the proof of (32). The only essen-
tially new aspects are that the proof of b � 0 uses the property (7), and that
bidder 1 is indifferent in the range (0� t∗] where no other bidder is expected to
drop out. We omit the details.

Turning to the nondesignated bidder types above the threshold, observe that
value bidding is at least as good as any bid above the designated bidder’s com-
peting bid:

∀i �= 1� h ∈ Hi� ti ≥ t∗� b > b∗
i : ti �h�i�ti b�(34)

The proof of (34) uses similar arguments as the proof of (32). One defines
Events E′

1–E′
4 analogous to E1–E4, with bidder 1 replaced by bidder i and t1

replaced by ti. One of the Events E′
1–E′

4 occurs; in each event, the payoff from
bid ti is not lower than from bid b. The only essentially new aspect is that
Event E′

4 has positive probability (and, hence, is payoff-relevant) only if b= t∗
and δ < 1, in which case bidder 1 bids t∗. Consider Event E′

4. Suppose that
n = 2. Then the bid b = t∗ ends the auction with a tie between bidder 1 and
bidder i = 2. If bidder 1 wins the tie, then, by Table II and Table IV, bidder 1
consumes the good so that bidder i obtains the payoff 0; if bidder i wins the tie,
then she obtains ti − t∗. In any case, the bid ti is weakly better than b. Suppose
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that n > 2. Then bidder i loses with bid b and obtains the payoff 0, so that the
bid ti is weakly better. This completes the proof of (34).

For nondesignated-bidder types below the threshold, any bid between the
designated bidder’s competing bid and t∗ is at least as good as any bid above
t∗:

∀i �= 1� h ∈ Hi� ti ≤ t∗� b ∈ (b∗
i � t

∗]� b′ > t∗: b�h�i�ti b
′�(35)

To prove (35), first consider the initial history h= h0. If at least one bidder not
equal to i has a type above t∗, bidder i obtains payoff 0 with any b; otherwise
all bidders not equal to i have types below t∗. If n > 2, then some bidder drops
out at price 0, so that bidder i’s bid at the initial history becomes irrelevant and
any b > 0 leads to the same ending history. Suppose that n= 2. If t1 ≤ τ∗, then
bidder 1 drops out at price b∗

i , which ends the auction, so that all b lead to the
same ending history. If t1 > τ∗, then bidder 1 drops out at price t∗ and bidder i
obtains payoff 0 with any b. Arguments are similar for h �= h0. This completes
the proof of (35).

For nondesignated-bidder types above the threshold, value bidding is at least
as good as any bid below the designated bidder’s competing bid:

∀i �= 1�h ∈ Hi� ti ≥ t∗� b≤ b∗
i : ti �h�i�ti b�(36)

We prove (36) at h= h0 (other histories are treated similarly). Also, we do not
consider the bid b = b∗

i ; its treatment combines the arguments used to prove
(34) with the arguments below, depending on whether or not bidder i wins the
tie against bidder 1.

Suppose first that n= 2. One of the Events E5–E7 occurs; in each event, the
payoff from bid ti is not lower than from bid b.

EVENT E5—Bidder 1 Bids b∗
2: Then with bid ti, bidder i wins at price b∗

2, the
period-2 belief is J∗

τ∗ , and bidder i’s payoff is

max{δwi(ti�J∗
τ∗)� ti} − b∗

i = ti − b∗
i �

With any bid b < b∗
i , bidder i loses, the period-2 belief is J∗

τ∗ , and her payoff is

δli1(ti�J∗
τ∗)

(1)≤ δ(ti − t∗)+ δli1(t∗�J∗
τ∗)

(13)= δ(ti − t∗)+ δ(t∗ − b∗
i )

= δ(ti − b∗
i )≤ ti − b∗

i �

Hence, the bid ti is weakly better.

EVENT E6—Bidder 1 Bids t∗: This event has positive probability only if
δ < 1, in which case bidder 1 consumes the good if she wins, so that any bid
b < b∗

i yields the bidder-i payoff 0. But the bid ti yields the payoff ti − t∗ ≥ 0.
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EVENT E7—Bidder 1 Bids Greater Than t∗: Then the proof that ti is weakly
better than any bid b < b∗

i uses similar arguments as the proof of (32).

Now suppose that n ≥ 3. Consider first the bid b = 0. If all bidders other
than 1 and i bid 0, then the proof that bid ti is weakly better is analogous to
the treatment of Event E5. If some bidder other than 1 or i does not bid 0,
then this bidder bids more than t∗ and this case is analogous to the treatment
of Event E7.

Now consider bids b > 0. If some bidder other than 1 or i bids 0, then all
bids b > 0 (in particular, the bid ti) yield the same ending history and hence
same payoff (because the initial-history bid becomes irrelevant). Otherwise,
all bidders other than 1 and i bid strictly more than t∗, so that any bid b < b∗

i

yields the payoff 0 and the bid ti is weakly better (similar arguments as in the
proof of (32)). This completes the proof of (36).

For nondesignated-bidder types below the threshold, the bid 0 is at least as
good as any bid below the designated bidder’s competing bid:

∀i �= 1�h ∈ Hi� ti ≤ t∗� b < b∗
i : 0 �h�i�ti b�(37)

To prove (37), observe that the bid 0 yields the same period-2 belief as any bid
b < b∗

i in any event, and bidder i always loses the auction. Hence, payoffs are
the same.

Finally, for nondesignated-bidder types below the threshold, the bid 0 is at
least as good as any bid between the designated bidder’s competing bid and t∗:

∀i �= 1�h ∈ Hi� ti ≤ t∗� b ∈ [b∗
i � t

∗]: 0 �h�i�ti b�(38)

We prove (38) at h= h0 (other histories are treated similarly). Also, we do not
consider the bid b = b∗

i ; its treatment combines the arguments used to prove
(37) with the arguments below, depending on whether or not bidder i wins the
tie against bidder 1.

Suppose first that n= 2. One of the Events E5–E7 defined above occurs; in
each event, the payoff from bid ti is not lower than from bid b.

Suppose Event E5 occurs. Then with bid b, bidder i wins at price b∗
2, the

period-2 belief is J∗
τ∗ , and bidder i’s payoff is

Ûi(ti)= max{δwi(ti�J∗
τ∗)� ti} − b∗

i �

With bid 0, bidder i loses, the period-2 belief is J∗
τ∗ , and her payoff is

U∗
i (ti)= δli1(ti�J∗

τ∗)�

Observe that

Ûi(t
∗)= t∗ − b∗

i

(13)= U∗
i (t

∗)�
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From (1), U∗
i is Lipschitz continuous and hence is differentiable almost every-

where, and the derivative is

U∗
i

′(ti)= δqi1(ti�J∗
τ∗)�

Similarly, the derivative of Ûi is

Û
′
i (ti)≥ δqi(ti�J∗

τ∗)�

Hence,

U∗
i (ti) = U∗

i (t
∗)−

∫ t∗

ti

U∗
i

′(s)ds

= Ûi(t
∗)− δ

∫ t∗

ti

qi1(s�J∗
τ∗)ds

(8)≥ Ûi(t
∗)− δ

∫ t∗

ti

qi(s�J∗
τ∗)ds

≥ Ûi(t
∗)−

∫ t∗

ti

Û
′
i (s)ds

= Ûi(ti)�

Hence, the bid 0 is weakly better.
If Event E6 or Event E7 occurs, bidder i’s payoff is 0 with either bid 0 or any

b ∈ (b∗
i � t

∗].
Now suppose that n ≥ 3. If all bidders other than 1 and i bid 0, then the

proof that bid 0 is weakly better than b ∈ (b∗
i � t

∗] is analogous to the treatment
of Event E5. If some bidder other than 1 or i does not bid 0, then bidder i’s
payoff is 0 anyway. Q.E.D.

PROOF OF LEMMA 5: If δ = 1, the result is obvious because τ∗i = ti. Let
δ < 1 and let

θ <min
{

1
4
�
δ

1 − δ
1

12

}
�(39)

Let i = 1 (the proof is analogous for other bidders). From (17), F2(t
∗/2)/

F2(t
∗)→ 1/2 as t∗ → 0. Hence, for all t∗ sufficiently close to 0,

1 − F2(t
∗/2)

F2(t∗)
>

1
3
�(40)
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A lower bound for the period-2 payoff of any type x ≤ θt∗ of bidder 1 is the
payoff from a take-it-or-leave-it fixed-price offer at t∗/2 to bidder 2:

w1(x�J∗
x)≥ x+

(
1 − F2(t

∗/2)
F2(t∗)

)(
t∗

2
− x

)
(39)�(40)
> x+ 1

3
t∗

4
�

Therefore, for all x≤ θt∗,

δw1(x�J∗
x)− x > δ

12
t∗ − (1 − δ)x (39)≥ 0�

implying τ∗ ≥ θt∗ by (9). Q.E.D.

PROOF OF LEMMA 6: For any threshold t∗, i ∈N , and ti ∈ [0� t∗], let22

Vi(ti) := ti − Fi(t
∗)− Fi(ti)
fi(ti)

�(41)

Step 1. If t∗ is sufficiently close to 0, then Vi is strictly increasing. To show
this, consider any t� t ′ such that 0 ≤ t < t ′ ≤ t∗. Then

Vi(t
′)− Vi(t)= t ′ − t − Fi(t

∗)− Fi(t ′)
fi(t ′)

+ Fi(t
∗)− Fi(t)
fi(t)

(42)

= t ′ − t − Fi(t
∗)− Fi(t ′)
fi(t ′)

+ Fi(t
∗)− Fi(t)
fi(t ′)

− Fi(t
∗)− Fi(t)
fi(t ′)

+ Fi(t
∗)− Fi(t)
fi(t)

= t ′ − t + Fi(t
′)− Fi(t)
fi(t ′)

+ (Fi(t∗)− Fi(t))fi(t
′)− fi(t)

fi(t)fi(t ′)

≥ t ′ − t + (Fi(t∗)− Fi(t))fi(t
′)− fi(t)

fi(t)fi(t ′)

≥ (t ′ − t)
(

1 − Fi(t∗) L

fi(t)fi(t ′)

)
�

where L is a Lipschitz constant for fi.
Let t∗ be so close to 0 that fi(0)/2 < fi(s) < 2fi(0) for all s ∈ [0� t∗]. Then

Fi(t
∗)= ∫ t∗

0 fi(s)ds < 2fi(0)t∗ and (42) implies

Vi(t
′)− Vi(t)≥ (t ′ − t)

(
1 − 2fi(0)t∗

4L
fi(0)2

)
�

22This is the virtual valuation function (cf. Myerson (1981)) for the belief [0� t∗] about bidder i.
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The right-hand side is strictly positive if t∗ < fi(0)/8L, showing that Vi is strictly
increasing.

The next step is to provide lower bounds for the virtual valuation functions
Vi (i ∈N) if t∗ is small. To this end, define

κi(t
∗) := fi(0)

min
x∈[0�t∗]

fi(x)
�(43)

Observe that κi(t∗)→ 1 as t∗ → 0. Hence, if t∗ is small, the lower bound es-
tablished in Step 2 approximates the virtual valuation function for a uniform
distribution on [0� t∗].

Step 2. For all i ∈N , t ∈ [0� t∗], and any threshold t∗,

Vi(t)≥ t − κi(t∗)(t∗ − t)+ O(t∗)

(cf. footnote 15). Using (17) and (41),

Vi(t)= t − fi(0)t∗ + hi(t∗)− fi(0)t − hi(t)
fi(t)

(44)

= t − fi(0)
fi(t)

(t∗ − t)+ h1
i (t� t

∗)

≥ t − κi(t∗)(t∗ − t)+ h1
i (t� t

∗)�

where

h1
i (t� t

∗) := hi(t
∗)− hi(t)
fi(t)

�(45)

Observe that (17) implies

sup
x∈[0�t∗]

|hi(x)|
t∗

≤ sup
x∈[0�t∗]

|hi(x)|
x

→ 0 as t∗ → 0�

Hence, defining f
i
(t∗) := minx∈[0�t∗] fi(x),

sup
x∈[0�t∗]

|h1
i (x� t

∗)|
t∗

≤ 1
f
i
(t∗)

( |hi(t∗)|
t∗

+
sup
x∈[0�t∗]

|hi(x)|
t∗

)
→ 0 as t∗ → 0�

The next step is to provide formulas for period-2-buyer allocation probabilities.
From now on, suppose that t∗ is sufficiently close to 0 so that the conclusion of
Step 1 holds.
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Step 3. For any j ∈N , i ∈N \ {j}, and ti ∈ [0� t∗],

qij(ti�J∗j)= Fj(Vi(ti))

Fj(τj∗)

∏
k∈N\{i�j}

Fk
(
V −1
k (Vi(ti))

)
Fk(t∗)

�(46)

where V −1
k (x) := 0 for all x < Vk(0). According to the Myerson optimal auc-

tion outcome given the period-2 seller j ∈ N and the belief J∗j , the good is
assigned to the buyer with the highest virtual valuation, unless j’s use value
is higher (cf. Myerson (1981)). From this the allocation probabilities (46) are
straightforward.

Step 4.—Proof of (22). Define ξ= 4/5. Using Step 2, for any i ∈N ,

Vi(ξt
∗)

t∗
≥ 4

5
− κi(t∗)1

5
+ O(1)→ 3

5
as t∗ → 0�

Thus, using Step 1, if t∗ is sufficiently close to 0, then

∀ti ∈ [ξt∗� t∗]: Vi(ti)≥ t∗

2
�(47)

Using (46), for any j �= i, if δ < 1, then

qij(ti�J∗j) = Fj(Vi(ti))

Fj(τ∗j)

∏
k∈N\{i�j}

Fk
(
V −1
k (Vi(ti))

)
Fk(t∗)

(47)�τ∗j<t∗≥ 1∏
k �=i
Fk(t∗)

Fj

(
t∗

2

) ∏
k∈N\{i�j}

Fk

(
V −1
k

(
t∗

2

)
︸ ︷︷ ︸

≥t∗/2

)

≥
∏
k �=i

Fk

(
t∗

2

)
Fk(t∗)

=
∏
k �=i

fk(0)
t∗

2
+ O(t∗)

fk(0)t∗ + O(t∗)

=
∏
k �=i

fk(0)
1
2

+ O(1)

fk(0)+ O(1)
→ 1

2n−1
> 0 as t∗ → 0�
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If δ = 1, similar arguments show that qij(ti�J∗j)/Fj(t∗) → 1/2n−1 because
τ∗j = tj . Hence, we can choose any ε < 1/2n−1. Q.E.D.

PROOF OF LEMMA 7: Using the envelope theorem,

U val
i (ti) =

∫ ti

0

∏
k �=i
Fk(x)dx

(17)=
∫ ti

0

∏
k �=i
(fk(0)x+ hk(x))dx

=
∫ ti

0

(∏
k �=i
fk(0)xn−1 + h1(x)

)
dx

(
where

h1(x)

xn−1
→ 0 as x→ 0

)

=
∏
k �=i
fk(0)

1
n
ti
n +

∫ ti

0
h1(x)dx�

Let ε > 0. If t∗ is sufficiently small, then |h1(x)| ≤ εxn−1 for all x≤ t∗. There-
fore, ∣∣∣∣

∫ ti

0
h1(x)dx

∣∣∣∣ ≤
∫ ti

0
|h1(x)|dx≤ ε

∫ ti

0
xn−1 dx≤ ε(t∗)n�

which completes the proof. Q.E.D.

PROOF OF LEMMA 8: First let δ < 1. Let ξ < θ and ε > 0 be so close to 0
that

1 − (n− 1)ε(1 − ξ) < (1 − ξ/θ)(1 − ε)�(48)

Because probabilities add up to 1,

∫ τ∗j

0
qj(tj�J∗j)

dFj(tj)

Fj(t∗)
+

∑
i �=j

∫ t∗

0
qij(ti�J∗j)

dFi(ti)

Fi(t∗)
= 1�(49)

Using Lemma 5,

lim inf
t∗→0

Fj(τ
∗j)− Fj(ξt∗)
Fj(τ∗j)

≥ lim inf
t∗→0

Fj(θt
∗)− Fj(ξt∗)
Fj(θt∗)

(17)= 1 − ξ

θ
�(50)
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It is well known that the incentive compatibility constraints for period 2 imply

(∗) the functions qj(·�J∗j) are weakly increasing.

We find (
1 − ξ

θ

)
lim sup

t∗→0
qj(ξt

∗�J∗j)

(50)≤ lim inf
t∗→0

Fj(τ
∗j)− Fj(ξt∗)
Fj(τ∗j)

lim sup
t∗→0

qj(ξt
∗�J∗j)

≤ lim sup
t∗→0

Fj(τ
∗j)− Fj(ξt∗)
Fj(τ∗j)

qj(ξt
∗�J∗j)

(∗)≤ lim sup
t∗→0

∫ τ∗j

0
qj(tj�J∗j)

dFj(tj)

Fj(τ∗j)

(49)= 1 − lim inf
t∗→0

∑
i �=j

∫ t∗

0
qij(ti�J∗j)

dFi(ti)

Fi(t∗)

≤ 1 − lim inf
t∗→0

∑
i �=j

∫ t∗

ξt∗
qij(ti�J∗j)

dFi(ti)

Fi(t∗)

(22)≤ 1 − ε lim inf
t∗→0

∑
i �=j

∫ t∗

ξt∗

dFi(ti)

Fi(t∗)

= 1 − ε lim inf
t∗→0

∑
i �=j

Fi(t
∗)− Fi(ξt∗)
Fi(t∗)

(17)= 1 − (n− 1)ε(1 − ξ)
(48)
<

(
1 − ξ

θ

)
(1 − ε)�

Dividing both sides by 1 − ξ/θ yields (23).
Now let δ = 1. Define ξ < 1 and ε > 0 as in (48) with θ = 1. Using (3) and

(4), qj(tj�J∗j)= 1 for all tj > t∗. Hence, because τ∗j = tj and probabilities sum
up to 1, ∫ t∗

0
qj(tj�J∗j) dFj(tj)+ (1 − Fj(t∗))+

∑
i �=j

∫ t∗

0
qij(ti�J∗j)

dFi(ti)

Fi(t∗)
= 1�
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Rearranging yields

∫ t∗

0
qj(tj�J∗j)

dFj(tj)

Fj(t∗)
+

∑
i �=j

∫ t∗

0

qij(ti�J∗j)
Fj(t∗)

dFi(ti)

Fi(t∗)
= 1�(51)

Similar to the cases δ < 1, we obtain (23) because

(1 − ξ) lim sup
t∗→0

qj(ξt
∗�J∗j)

(17)= lim sup
t∗→0

Fj(t
∗)− Fj(ξt∗)
Fj(t∗)

qj(ξt
∗�J∗j)

(∗)≤ lim sup
t∗→0

∫ t∗

0
qj(tj�J∗j)

dFj(tj)

Fj(t∗)

(51)= 1 − lim inf
t∗→0

∑
i �=j

∫ t∗

0

qij(ti�J∗j)
Fj(t∗)

dFi(ti)

Fi(t∗)

(22)≤ 1 − ε lim inf
t∗→0

∑
i �=j

∫ t∗

ξt∗

dFi(ti)

Fi(t∗)
� Q.E.D.

PROOF OF LEMMA 9: If ti < ξt∗, the claim Ub
ij(ti)≥ 0 is immediate from (4).

Let ti > ξt∗. Using (1) and lij(0�J∗j)≥ 0 (from (4)), if δ < 1, then

1
Fj(τ∗j)

1∏
k/∈{i�j}

Fk(t∗)
Ub
ij (ti) ≥ δ

∫ ti

0
qij(x�J∗j) dx

(22)≥ δ

∫ ti

ξt∗
εdx= δε(ti − ξt∗)�

which together with Lemma 5 implies the claim. If δ = 1, similar arguments
imply

1∏
k/∈{i�j}

Fk(t∗)
Ub
ij (ti)≥ εFj(t∗)(ti − ξt∗)� Q.E.D.

PROOF OF LEMMA 10: If ti > ξt∗, the claim Us
i (ti) ≥ ti is immediate from

equilibrium condition (c). Let ti ≤ ξt∗. First let δ < 1. Then ti < θt∗ ≤ τ∗i by
Lemma 5. Using (2) and the fact that δwi(τ∗i�J∗i) = τ∗i (from the definition
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of τ∗i),

1∏
k �=i
Fk(t∗)

Us
i (ti) = τ∗i − δ

∫ τ∗i

ti

qi(x�J∗i) dx

= τ∗i − δ(τ∗i − ti)+ δ
∫ τ∗i

ti

(1 − qi(x�J∗i)) dx

(23)≥ ti + δε(ξt∗ − ti)�

as was to be shown. If δ= 1, then the claim follows from analogous arguments
with τ∗i replaced by t∗. Q.E.D.

APPENDIX B: t∗-EQUILIBRIUM STRATEGIES ARE UNDOMINATED

We shall show that the strategies used in t∗-equilibria are undominated. To
do so we utilize the “type-player interpretation” of the auction-with-resale
game, where different types of a bidder represent different players (see, e.g.,
Osborne and Rubinstein (1994, p. 26)).23 A pure strategy s for type ti ∈ Ti of
bidder i is undominated if, for any strategy s′ �= s, either s′ yields the same (ex-
pected) payoff as s no matter what other bidders do, or

(∗) there exists a profile of strategies s−i for the bidders other than i such
that s yields a strictly higher payoff than s′ against s−i.

Assume that there are n= 2 bidders, so that the period-2 seller makes a fixed-
price take-it-or-leave-it offer according to the Myerson optimal auction out-
come; at the end of this section we comment on the extension of the ar-
guments to environments with n ≥ 3 bidders. A pure strategy s for type ti
of bidder i is described by a bid βi(ti) and a resale price function ri(ti� ·),
where ri(ti�p) ∈ [0�∞) ∪ {Consume} denotes her resale price or consump-
tion decision when she wins the auction at price p. The domain of the func-
tion ri can be restricted to the set {(ti�p)|ti ∈ [0� ti]�p ∈ [0�βi(ti)]}.24 Any re-
sale price is accepted by all losing-bidder types greater than or equal to this
price.

23This corresponds to the natural viewpoint that the bidders select their strategies after they
have learned their private information.

24We do not have to specify a bidder’s resale price if she wins at a price higher than her bid,
because under this circumstance different resale prices yield equivalent strategies.
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The t∗-equilibrium strategies can be defined such that, for all p,25

ri(ti�p) ∈
{
(ti/δ� t−i)∪ {Consume} if δ < 1,
(ti� t−i) if δ= 1 and ti < t−i�
ti if δ= 1 and ti ≥ t−i�

(52)

Proposition 4 shows that pure strategies satisfying (52) are undominated, ex-
cept possibly for type-0 bidders. The proof proceeds in two steps. First, we
show that a strategy of any type of bidder i that involves a (nonrandomized)
bid b cannot be weakly dominated by an alternative strategy where the bidder
submits a bid other than b. This is true because assuming the other bidder bids
so aggressively that bidder i must wait for a resale offer, it may be the case
that a favorable resale offer is made only if bidder −i wins at price b, making
the bid b uniquely optimal. In the second step we show that a strategy of any
type of bidder i that involves a bid b and a certain resale price x �= Consume if
the bidder wins at a given price p≤ b cannot be weakly dominated by a strat-
egy where bidder i sticks to the bid b, but changes her resale behavior upon
winning at p. Here we use the assumption that bidder −i’s valuation density
is positive at x. Indeed, if, for some small ε > 0, types [x�x+ ε] of bidder −i
bid p and all other types bid more than b, then it is uniquely optimal to offer
resale at price x upon winning at p (and the resale decisions when winning at
a price that is unequal to p are irrelevant). The argument is slightly different if
x= Consume.

PROPOSITION 4: Let n= 2. For all types ti �= 0 of all bidders i, any pure strategy
satisfying (52) is undominated.

PROOF: Consider any pure strategy s for type ti of bidder i consisting of a
bid b and a resale price function ri(ti� ·). Let V (b) denote the set of all (pure
or mixed) strategies of type ti of bidder i where she bids b with certainty.

Step 1.—(∗) holds if s′ /∈ V (b). Define strategies s−i = (β−i(t−i)� r−i(t−i� ·))
for the various types t−i ∈ T−i of bidder −i as follows. Bidder −i of type t−i
bids β−i(t−i) > max{b� t−i}. If she wins at any price p �= b, then she chooses
a resale price r−i(t−i�p) optimally given the belief that bidder i’s type is in
[ti − ε� ti], where ε > 0 is defined below.26 She chooses r−i(t−i� b) optimally
given the belief that bidder i’s type is in [0� ti].

25If δ = 1 and ti ≥ t−i , all resale prices greater than or equal to ti yield the same payoff as
Consume, so we can fix the price at ti . Otherwise, any strategy not satisfying (52) is dominated. If
δ < 1, any price less than or equal to ti/δ is no better, and sometimes worse, than consuming the
good. If δ= 1, any price less than or equal to ti is no better, and sometimes worse, than any price
in (ti� t−i). Any price greater than or equal to t−i will be accepted with probability 0 from an ex
ante viewpoint.

26The argument works with ε = 0 if ti < ti . But the belief {ti} implies r−i(t−i�p) = ti if t−i is
small, which violates (52).
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Now consider bidder i of type ti who is bidding against s−i. Any bid that is
unequal to b yields a payoff that is less than or equal to ε, while the bid b yields
a positive expected payoff û > 0 because with positive probability bidder i gets
a resale offer priced below ti. Choosing ε < û, the strategy s is strictly better
than any strategy not in V (b). This completes Step 1.

If δ= 1 and ti ≥ t−i, we are done because V (b)= {s}. From now on, assume
that δ < 1 or ti < t−i.

Given any p≤ b, let W (p�b) denote the set of all (pure or mixed) strategies
where type ti of bidder i chooses the resale price ri(ti�p) with certainty when
she wins at price p.

Step 2.—(∗) holds if s′ ∈ V (b) \W (p�b). First assume that ri(ti�p) =: x �=
Consume. Observe that ti < t−i by (52). Define strategies s−i = (β−i(t−i)�
r−i(t−i� ·)) such that β−i(t−i)= p if t−i ∈ [x�x+ ε] and β−i(t−i) > b otherwise,
where ε > 0 is chosen so small that

y − F−i(x+ ε)− F−i(y)
f−i(y)

> ti ∀y ∈ [x�x+ ε]�(53)

Resale prices r−i(t−i� ·) are arbitrary. Against s−i, if type ti of bidder i wins at
price p, then the resale price x is uniquely optimal for her (her period-2 payoff
from resale price y is strictly decreasing for y ∈ [x�x+ ε], which can be seen
by computing the derivative of the payoff and using (53)). Because the price
x > ti/δ is accepted with certainty, it is also better than Consume. Hence, s is
strictly better than any s′.

Now assume that ri(ti�p) = Consume. Define strategies s−i = (β−i(t−i)�
r−i(t−i� ·)) such that β−i(t−i) = p if t−i ∈ [0� ε] and β−i(t−i) > b otherwise,
where ε < ti. Resale prices r−i(t−i� ·) are arbitrary. If type ti of bidder i wins
at price p against s−i, then Consume is better than offering resale. Hence, s is
strictly better than any s′. This completes Step 2.

Steps 1 and 2 show that s is undominated because27

{s} =
⋂
p≤b
W (p�b)∩ V (b)� Q.E.D.

Now consider environments with n≥ 3 bidders. The crucial complication in
extending Proposition 4 occurs in Step 1 of the proof. Below we outline a proof
of the fact that strategies involving arbitrary bid functions are undominated, as
long as the resale behavior is appropriately restricted in a manner similar to
(52).

Any type of a given bidder must choose a planned dropout price (bid) at each
history during the English auction. First, one shows that a strategy that involves

27Observe that, for the verification of (∗) in Steps 1 and 2, the strategy profile s−i can itself be
taken to be a profile of strategies satisfying (52). In this sense, any pure strategy satisfying (52)
survives any iterated elimination of dominated strategies.
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some bid b at the initial history cannot be weakly dominated by a strategy that
involves a bid different from b at the initial history. The resale mechanisms
involved in this argument are second-price auctions with reserve prices similar
to the resale prices used in the two-bidder proof. Next, a strategy that involves
a bid b at the initial history and a bid b′ at the history h′, which is reached when
a certain bidder drops out at a certain price, cannot be dominated by a strategy
where she submits the bid b at the initial history and a bid that is unequal
to b′ at h′; to show this, one constructs strategies of the other bidders such
that history h′ is reached and then, as before, the remaining active rivals bid so
aggressively that the bidder must wait for a resale offer. Continuing inductively
to the end of the auction, one sees that a strategy cannot be dominated by any
strategy that involves a bidding structure different from the one used in the
original strategy.
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