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Abstract

In this paper I present a novel approach to inference in models where the partially

identified parameter is defined by a set of conditional moment inequalities with con-

tinuous covariates. This class of models covers many economic applications, including

treatment response models and regression with missing or interval outcome data. De-

pending on the assumptions that a researcher is willing to make on conditional moment

functions that define the inequalities, I propose inference procedure that is based on the

distance between the set of conditional moment functions and the cone of non-positive

(or non-negative) functions. If a researcher is reluctant to impose any assumptions about

the shape of conditional moment functions except certain smoothness conditions, I offer

a method that relies on bootstrapping of the simultaneous lower confidence bands for

nonparametric estimators of conditional moments. In general, this inference procedure

may lead to a conservative coverage. However, I show that under a particular set of

shape restrictions on conditional moment functions one can construct confidence sets

based on a Gaussian asymptotic approximation that is relatively easy to implement and

attains accurate coverage in small samples. Finally, I conduct Monte Carlo simulations

to illustrate both procedures.
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1 Introduction

The majority of economic models focus on the conditional mean function. Additionally,

the identification of the parameters of interest in many econometric settings often re-

quires to impose fairly restrictive and sometimes unjustified assumptions. For example,

in a simple linear regression model with missing data we need to impose additional

assumptions about the mechanism that generates missing values in order to get point

identification of the slope coefficients. Nonetheless, it is often possible to relax such

assumptions and still get meaningful restrictions on the set of values that these pa-

rameters may take. In many cases this relaxation leads to models where the set of

parameters compatible with the model is defined by a set of inequality constraints for

conditional moment functions. Till this point, most of the literature focused either

on constraints on unconditional moments or on the cases where the conditioning co-

variates are discrete. However, in real data many of the interesting applications deal

with continuous covariates. One way to treat such a case is to transform unconditional

moment inequalities into a finite set of conditional moment constraints and then apply

the standard techniques developed in the literature. Unfortunately, this approach may

lead to a loss of information, and as the result the researcher may end up with the

confidence sets that are too large. In this paper I avoid a such a transformation and

work directly with the (nonparametric) estimators of the conditional moment functions.

This allows me to exploit all the information that the data contains. First, I consider

the case where no shape restrictions are placed on the conditional moment functions

and propose a consistent inference procedure that is based on the bootstrap approxi-

mation of the deviations of conditional moment functions (that are non-positive of a

given parameter value belongs to the identified set) from their consistent nonparametric

estimator. Second, I argue that a special case of shape restrictions on the conditional

moments can be justified and for this case I propose an inference procedure that is based

on the Gaussian asymptotic approximation and as such is relatively easy to implement.

Finally, I conduct a Monte Carlo experiment that illustrates small sample performance

of both methods.

This paper focuses on a particular class of partially identified models: models defined

by a finite number of conditional moment inequalities with continuously distributed
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covariates. Formally, the identified set ΘI is defined as

ΘI = {θ ∈ Θ : E[mj(Z, θ)|X = x] ≤ 0 for all x and j = 1, . . . , k} ,

where X is a compact (not necessarily proper) subset of the support of X. Here m(·, θ)
is a vector-valued function that is known up to the value of the parameter of interest,

θ, and both Z and X are observable, possibly multidimensional, random variables.

Random vector Z may or may not include vector of covariates, X. The objects of

interest is a confidence set Cn that is pointwise consistent in level (the term is due to

Romano and Shaikh, 2008), i.e.

inf
θ∈ΘI

lim
n→∞

P{θ ∈ Cn} ≥ 1− α. (1.1)

I construct confidence sets that satisfy (1.1) through pointwise testing procedure. That

is, I construct (1 − α) confidence set Cn,1−α as a collection of all parameter value

for which we fail to reject the null hypothesis H0 : θ ∈ ΘI against the alternative

H1 : θ /∈ ΘI . I choose the maximum deviation from zero of the estimator of conditional

moment functions, properly normalized, as a statistic to test this null hypothesis. I

use Nadaraya-Watson estimator of conditional moment functions. The limiting distri-

bution of the statistic is different if different assumptions are made about the shape of

conditional moment constraints. If we make no such assumptions besides some general

smoothness conditions, then I propose a method based on bootstrap simultaneous con-

fidence band (actually, half-band) for a conditional moment functions. However, this

method may lead to conservative inference in small samples since it involves estimation

of the set of zeros (or the argmax) of constraints, and without placing any restrictions

this can be done only at the rate Op((log log n/nh)1/2), where h is the bandwidth choice.

I claim that in certain economic model it may be reasonable to assume that for the

parameter values in the identified set conditional moment functions may have a unique

binding point. That is, for any given parameter value of the boundary of the identified

set, there is only one point in X that some conditional moment inequality turns into

an equality. In such a case one can learn the argmax set at the rate O((nh3)−1/2). In

this setup, I show that one can construct an asymptotic approximation to the distri-

bution of the chosen test statistic that behaves as a certain component-wise maximum

of a multivariate Gaussian random variable. Basically, under these assumptions the
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problem of constructing confidence set for the identified set reduces to estimation of

moment conditions in a finite number of points, i.e. we are back to a finite number

of inequalities. I propose an inference procedure analogous to the generalized moment

selection approach of Andrews and Soares (2007), as well as give an approximation

based on the wild bootstrap.

Finally, I consider an even more restrictive case when conditional moment functions

are specified parametrically. If for each partially identified parameter value θ we can

estimate conditional moments
√
n-consistently, then I propose method based on the

inference for the stochastic optimization problem studied in Shapiro (2000).

There is a number of techniques available in the literature that deal with the par-

tially identified parameters. In the case of the scalar parameter of interest, the identifi-

cation region is often an interval whose boundaries can be consistently estimated from

the data. Inference procedures in such settings are developed in Horowitz and Manski

(1998, 2000), Imbens and Manski (2004), Stoye (2007), and Fan and Park (2007). For

a class of models whose identification region can be expressed is an expectation of a

set valued random variable, Beresteanu and Molinari (2006) propose inference based

on the Hausdorff distance between the identified set and its estimator. For a broad

class of partially identified models, Chernozhukov, Hong, and Tamer (2007) extend

the criterion function approach to set identified parameters, in particular those char-

acterized by moment inequalities. They propose inference based on subsampling and

asymptotic approximation to the distribution of sample criterion function. Building on

this result, Romano and Shaikh (2006, 2007) suggest a different subsampling procedure

that does not require an initial estimate of the identified set and that yields uniformly

asymptotically valid confidence sets.

A number of papers focus explicitly on models with moment inequalities. Rosen

(2006) constructs confidence sets based on pointwise testing and proposes a Wald-type

statistic. Bugni (2007) and Canay (2007) introduce modifications of bootstrap proce-

dure that are not subject to inconsistencies, while Andrews and Soares (2007) consider

confidence sets based on generalized moment selection method and compare asymp-

totic power of various inference procedures. Andrews and Guggenberger (2007) address

the issue of uniform inference and show uniform asymptotic validity for a broad class

of confidence sets based on subsampling and “worst-case” asymptotic approximation.

Those are the papers that focus on the univariate distribution of some criterion func-
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tion. Another approach, introduced by Andrews, Berry, and Jia (2004), is to base

inference directly on the distribution of sample analog of inequality constraints. The

authors suggest a procedure that is based on a bootstrap approximation to the dis-

tribution of moment inequalities, while Pakes, Porter, Ho, and Ishii (2005) use an

asymptotic approximation. Galichon and Henry (2006) extend this approach to more

general settings and propose a dilation bootstrap approximation for their version of

Kolmogorov-Smirnov test. Finally, Moon and Schorfheide (2007) and Liao and Jiang

(2008) present a Bayesian approach to inference in partially identified model with un-

conditional moment inequalities. Liao and Jiang (2008) also show how in this setup

one can consistently estimate the identified set for any real-valued continuous function

of the parameter of interest.

The majority of the papers discussed above (with the exception of Chernozhukov,

Hong, and Tamer (2007)) focus either on models with unconditional moment inequali-

ties of models with discrete covariates. In a context of the randomly censored regression

with continuous covariates, Khan and Tamer (2006) show that when the parameter of

interest is point identified by conditional moment inequalities, it is possible to trans-

form conditional moment constraints into unconditional ones and preserve point iden-

tification. The resulting estimator of the point identified parameter has a parametric

convergence rate 1/
√
n. Galichon and Henry (2006) suggest using the same transfor-

mation for partially identified model with continuous covariates. However, under this

approach the number of unconditional moment constraints in the transformed model is

a quadratic function of the sample size. In the same setup, Kim (2009) shows that the

test statistic based on such transformation has a nonstandard limiting distribution that

can be approximated by the infinite mixture of independent, centered chi-square distri-

butions. Kim suggests subsampling as mean of constructing confidence sets. However,

in the context of finite number of conditional moment inequalities Bugni (2007) shows

that straightforward subsampling may lead to significant undercoverage in small sam-

ples. Menzel (2009) analyzes the case when the number of moment inequalities grows

with the sample size. He also points out that when the the number of unconditional

moments is large relative to the sample size, the subsampling procedure fails to achieve

a desired confidence level is small samples. Andrews and Shi (2009) also study the

above transformation of conditional moment inequalities into unconditional ones.

Another approach is to estimate conditional moment functions nonparametrically
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and then to test whether they belong to the space of nonpositive functions. Ghosal,

Sen, and van der Vaart (2000), Lee, Linton, and Whang (2007), and Birke and Dette

(2007) use kernel estimator to test that a conditional mean function belongs to the

space of (strictly) monotonic functions. Chernozhukov, Lee, and Rosen (2009) apply

this approach to inference in models where the identified set is an interval with upper

(lower) bound defined as a minimum (maximum) of a bound generating function that

can be estimated parametrically or nonparametrically.

The rest of the paper is organized as follows. In section 2 I present several eco-

nomic models where the identified set is defined by a number of conditional moment

inequalities with continuous covariates. I also informally describe the methods pro-

posed in the paper. In section 3 I formally describe the the setup and consider three

cases distinguished by the restrictions placed on the conditional moment functions. For

each of those cases I provide an inference method and justify it theoretically. Section 4

presents results of the Monte Carlo simulations, and section 5 concludes. All proofs of

the results in this paper are collected in the Appendix.

2 Motivating Examples and Outline of the Infer-

ence Procedure

In this section I present three examples from the economic literature that deal with the

partially identified parameters defined by the set of conditional moment inequalities

and briefly describe the inference procedure.

Example 1: Parametric Regression with Missing Data. Sometimes the data

available to the researcher may contain some missing values. If the researcher is inter-

ested in e.g. conditional mean of a certain variable that is not completely observed, then

removal of the missing data from the sample may lead to a severe bias due to the fact

that the data is not missing at random. The situation with missing outcome data can

be treated as a special case of the regression with interval data, where some intervals

(that correspond to the non-missing observations) are singletons. In particular, sup-

pose that the conditional expectation of outcome Y given the vector of covariates X is

E[Y |X = x] = g(x, γ), where function g is known up to a vector of parameters γ. The
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explanatory variable X is fully observed, however some observations of the outcome

variable Y are missing. Let W be the indicator that the observation is non-missing, so

that Y is observed if and only if W = 1. By the law of iterated expectations,

E[Y |X = x] = E[Y |X = x,W = 0]P{W = 0|X = x}+E[Y |X = x,W = 1]P{W = 1|X = x}.

If Y |X takes values in the bounded set [Y0(X), Y1(X)], so that

P {Y ∈ [Y0(x), Y1(x)]|X = x} = 1 for any x ∈ X , then the identified set for the

parameter of interest, γ, is given by the following conditional moment constraints:

ΘI =


γ ∈ Θ such that ∀x ∈ X :

E[Y0(X)|X = x,W = 0]p0(x) + E[Y |X = x,W = 1]p1(x)

≤ g(x, γ) ≤
E[Y1(X)|X = x,W = 0]p0(x) + E[Y |X = x,W = 1]p1(x)

 ,

where p0(x) = P{W = 0|X = x} and p1(x) = 1 − p0(x). Here both lower and

upper bounds on g(x, γ) are the conditional expectations of the fully observed random

variables and therefore can be consistently estimated.

Example 2: Parametric Regression with Interval Data. Another example is

a parametric regression when the outcome is characterized by an interval rather than

a point (see Manski and Tamer, 2002). For example, sometimes questionnaires elicit

respondents’ income brackets instead of the exact figure. Formally, let the conditional

expectation of outcome Y given vector of covariates X be given by a parametric form

E[Y |X = x] = f(x, β), where function f in known up to the parameter β. However,

instead of directly observing Y , we observe only upper and lower bounds on Y , so the

data available to the researcher consists of (Y0, Y1, X), where Pr {Y0 ≤ Y ≤ Y1} = 1

and Y0 � Y1. The model implies that for any given point x that belongs to the support

of the vector of covariates X, we have the following set of inequalities:

E[Y0|X = x] ≤ f(x, β) ≤ E[Y1|X = x].

Without imposing any additional assumptions about the distribu-

tion of Y |Y0, Y1, X, the identification set for β is given by ΘI =
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{β ∈ Θ : E[Y0|X = x] ≤ f(x, β) ≤ E[Y1|X = x] ∀x ∈ X}. It is common to assume

that f(x, β) = f(xβ). This setup includes linear, probit or logit model.

Example 3: Analysis of Treatment Response in the Presence of Instrumental

Variables. In general, unobservability of counterfactual outcomes does not allow for

point identification of treatment effects without making strong assumptions such as

random assignment to treatments. However, if there exist an instrument variable v

such that treatment outcome is independent of v conditional on the vector of covariates

x, then the sharp bounds on average treatment effect E[y(t)|x] are given by (see Manski,

2003):

E[y · 1{z = t}|x, v] ≤ E[y(t)|x] ≤ E[y · 1{z = t}+ 1{z 6= t}|x, v],

where both upper and lower bounds are conditional expectations of the observed random

variables, and therefore can be consistently estimated. For simplicity, assume that there

are only to possibilities: either the subject receives treatment, and then t = 1, or he

does not, and then t = 0. The object of interest is then θx = E[y(1)|x] given the vector

of person’s characteristics x. Then the identified set for θx is given by

Θx,I = {θ ∈ Θ : E[y · 1{z = t}|x, v] ≤ E[y(t)|x] ≤ E[y · 1{z = t}+ 1{z 6= t}|x, v] ∀v ∈ V} .

Outline of the Inference Procedure. There is a direct connection between testing

a given hypothesis and construction of a confidence set associated with this hypothesis,

which we will use to construct confidence set Cn,1−α for each element of the identified

set. In particular, suppose that we want to test the null hypothesis that a candidate

parameter θ from the set of all possible parameter values Θ belongs to the identified

set ΘI against the the alternative that it does not belong to the identified set. That

is, we want to test H0 : θ ∈ ΘI vs H1 : θ /∈ ΘI with asymptotic size less than or equal

to some prespecified value α. Now suppose we employ some statistic Tn(θ) to test the

null hypothesis, so that under the null hypothesis its properly scaled version converges

in distribution to some nondegenerate random variable Zθ, i.e. an(Tn(θ) − bn)
d→ Zθ.

Then we can construct a (1− α) confidence set Cn,1−α as

Cn,1−α =
{
θ ∈ Θ : anTn(θ) < q(θ, 1− α)

}
, (2.1)
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where q(θ, 1 − α) is the (1 − α) quantile of the distribution of Zθ. That is, we collect

all values of θ such that we fail to reject the null hypothesis that this parameter value

belongs to the identified set. Lemma 6.4 in the Appendix shows that confidence sets

constructed in this way satisfy (1.1).

In terms of the moment restrictions, our null and alternative hypotheses can be

stated as:

H0 : E[mj(Z, θ)|X = x] ≤ 0 for all x ∈ X and all j ∈ {1, . . . , k}

H1 : E[mj′(Z, θ)|X = x′] > 0 for some x′ ∈ X and some j′ ∈ {1, . . . , k}.
(2.2)

Note that the null hypothesis can be equivalently stated as

max
x∈X ,j=1,...,k

E[mj(Z, θ)|X = x] ≤ 0.

Therefore, I propose a test statistic based on a maximum of uniformly consis-

tent and asymptotically unbiased estimators of the conditional moment functions

{E[mj(Z, θ)|X = x], x ∈ X , j = 1, . . . , k}:

Tn(θ) = max
x∈X ,j=1,...,k

Ên[mj(Z, θ)|X = x]

sj(x; θ)
,

where sj(x; θ) is the standard error of Ên[mj(Z, θ)|X = x]. Let’s consider the fol-

lowing random variable: max
j=1,...,k

max
x∈V j0 (θ)

Ên[mj(Z,θ)|X=x]−E[mj(Z,θ)|X=x]

sj(x;θ)
, where V j

0 (θ) is a set

of zeros of the j’th conditional moment function, and if V j
0 (θ) = ∅, then we define

max
x∈V j0 (θ)

Ên[mj(Z,θ)|X=x]−E[mj(Z,θ)|X=x]

sj(x;θ)
≡ 0. If we knew some asymptotic approximation to

the distribution of this random variable, then we could find its (1−α)-quantile q1−α(θ)

such that

lim
n→∞

P

{
max
j=1,...,k

max
x∈V j0 (θ)

Ên[mj(Z, θ)|X = x]− E[mj(Z, θ)|X = x]

sj(x; θ)
≤ q1−α(θ)

}
= 1− α

and reject the null hypothesis if Tn(θ) is greater than q1−α(θ). However, such approxi-

mation is not readily available except for the case k = 1, when the limiting distribution

is an Extreme Value Type I distribution (see e.g. Johnston, 1982), and even in this

case the convergence to the EVT I distribution is very slow. Therefore, I propose to
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estimate q1−α(θ) via bootstrap, which is shown in Hall (1993) to have a faster rate of

convergence. Let Ê∗n[mj(Z, θ)|X = x] denote the estimator of the conditional moment

functions for the bootstrap sample, and s∗j(x; θ) denote the standard error of the es-

timator Ê∗n[mj(Z, θ)|X = x]. Then we can estimate q1−α(θ) with q̂1−α(θ), where the

latter is chosen to satisfy:

P

{
max
j=1,...,k

max
x∈V̂ j0 (θ)

Ê∗n[mj(Z, θ)|X = x]− Ên[mj(Z, θ)|X = x]

s∗j(x; θ)
≤ q̂1−α(θ)

}
= 1− α

where set V̂ j
0 (θ) asymptotically is a superset for V j

0 (θ). This method in general leads

to the conservative coverage, since it uses a superset of V j
0 (θ) rather than the set of

zeros itself. This result is in parallel to those of Rosen (2006) for the model with

unconditional moment inequalities, where an obvious upper bound on the number of

binding inequalities is the total number of inequalities. However, if we know that

V j
0 (θ) = X , then the method provides the exact pointwise coverage only if there exists

some θ0 ∈ ΘI such that E[mj(Z, θ0)|X = x] = 0 for every x and j.

When is it also possible to obtain the exact coverage of the identified set? One

possibility is to specify a parametric form of the conditional moment functions for any

given θ. For example, in the parametric regression with interval data one can also think

of a parametric form for the conditional expectations of upper and lower interval points,

i.e. E(Y1|X) = g1(x, γ1) and E(Y0|X) = g0(x, γ0), where functions g1 and g0 are known

up to the parameters γ1 and γ0, correspondingly. Another possibility is to assume that

for any θ in the identified set for each j the set Xj
0(θ) = arg max

x∈X
E[mj(Z, θ)|X = x]

is either a singleton or an empty set. In other words, for any θ on the boundary of

the identified set conditional moment functions are not flat around zero. In both of

this cases it is possible to approximate the distribution of the statistic Tn(θ) with a

certain functional of a multivariate Gaussian random variable Z(θ) using a consistent

estimator of the set of zeros rather than of its superset, and use its critical values to

construct pointwise confidence sets.

Figures 1 and 2 illustrate the difference between flat and non-flat constraints for the

model with interval outcome data, where f(x, θ) is assumed to be linear, i.e. f(x, θ) =

θ0 + θ1 · x. Next section presents the theoretical justification and the set of necessary

assumptions for inference procedures in both of this cases.
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3 Model and Inference

I start with formalizing the model. For the ease of presentation, assume that the model

is characterized by k = 2 conditional moment restrictions:

E[m1(Z, θ)|X = x] ≤ 0
...

E[mk(Z, θ)|X = x] ≤ 0

(3.1)

where functions m1(z, θ), . . . ,mk(z, θ) are known. Define J = {1, . . . , k}. We are

interested in characterizing the set of parameter values θ that satisfy all conditional

moment restrictions for every x in some set X 1. We call this set the identified set and

denote it by ΘI . The researcher observes a random sample {(Xi, Zi), i = 1, . . . , n} from

population (Ω,B,P), where B is a σ-algebra of Borel sets on Ω. Let SX ⊂ Rd and

SZ ⊂ Rq denote the support of random vectors X and Z, respectively. We impose the

following assumptions:

(A1) (Random sampling) The data {(Xi, Zi), i = 1, . . . , n} are i.i.d. sample from

(Ω,B,P).

(A2) (Compact parameter space) Parameter of interest θ belongs to the compact set

Θ ⊂ Rm, 0 < m < +∞.

(A3) (Conditioning over compact set) The set X ⊆ SX is compact.

This gives the following definition of the identified set:

Definition: The identified set is given by

ΘI = {θ ∈ Θ : (3.1) holds for all x ∈ X} (3.2)

The goal is to construct a confidence set Cn,1−α for each element of ΘI that asymp-

totically consistent in level:

inf
θ∈ΘI

lim
n→∞

P{θ ∈ Cn,1−α} ≥ 1− α. (3.3)

1In most of the cases we are interested in the case when moment conditions hols for any x in the
support of X, so that X = supp(X).

11



As it was discussed in Section 2, the confidence sets in this paper are based on testing

for each candidate value θ ∈ Θ the hypothesis that θ ∈ ΘI against the alternative that

θ /∈ ΘI , that is

H0 : E[mj(Z, θ)|X = x] ≤ 0 for all x ∈ X and all j ∈ {1, 2}

H1 : E[mj′(Z, θ)|X = x′] > 0 for some x′ ∈ X and some j′ ∈ {1, 2}.
(3.4)

I construct the test statistic for the null hypothesis in the following way. Let

Ên[mj(Z, θ)|X = x] be an estimator (parametric or nonparametric) of the j′th con-

ditional moment function E[mj(Z, θ)|X = x] and let sj(x, θ) be the standard error of

this estimator. Define a test statistic Tn(θ) as

Tn(θ) = max

{
max
x∈X

Ên[mj(Z, θ)|X = x]

sj(x, θ)
; j ∈ J

}
(3.5)

If the null hypothesis is true for a candidate parameter θ, we can expect to see small

values of Tn(θ). Quantity [Tn(θ)]+
2 can be viewed as a minimum (in the supremum

norm) distance from the vector of estimators of the conditional moment functions to

the space of non-positive functions.

The choice of the estimator of the conditional moment functions Ên[mj(Z, θ)|X = x]

may be arbitrary as long as this estimator is uniformly consistent on X . One can esti-

mate conditional moment functions nonparametrically, or one can specify a parametric

form for the conditional moments and use a
√
n-consistent estimator of this parameter

to estimate those functions. In this paper I focus on inference based on the Nadaraya-

Watson (kernel) estimator of conditional moment functions in the nonparametric case;

and for the parametric case I provide results assuming availability of a parametric
√
n-

consistent estimator of conditional moment functions for any θ in the parameter space

Θ.

As it was noted in previous section, the asymptotic coverage results depend on the

shape of the conditional moment functions. Therefore, I divide further discussion into

three subsections. First subsection deals with the case when no restrictions are imposed

on the conditional moment functions besides some necessary smoothness assumptions.

This is the case that allows for the possibility of flat binding constraints. Second

2I define [u]+ = max{u, 0}.
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subsection constructs confidence sets in the case where for any parameter θ on the

boundary of the identified set each of the binding conditional moment inequalities has

a unique global maximum. That is, we rule out the possibility of flat binding constrains.

In both subsections I use kernel estimators of conditional moment functions. Finally,

third subsection treats the case of the parametric form of the conditional moment

constraints.

Since I will be using a L∞ distance from the conditional moment function to the set

of non-positive functions as the test statistic, the problem of testing the non-positivity

of conditional moment functions amounts to estimating the distance from a regression

function to a cone of non-positive functions. The latter problem is studied in Juditsky

and Nemirovski (2002). They show in the context of a white-noise model that the min-

imax risk of estimating the Lr-distance, 1 ≤ r < ∞, from the (unobserved) regression

function to the cone of non-positive functions is essentially the same (up to the lnn)

as the minimax risk of estimating the regression function itself. For example, for the

class of bounded and k = 2 times continuously differentiable functions, the minimax

risk R∗(n) of estimating the distance Φr from a regression function to the cone of non-

positive functions on [0, 1], defined as R∗(n) = inf
f̂n

sup
f∈C2[0,1]

E{|Φr(f̂n) − Φr(f)|}, where

the infimum is taken over the set of all nonparametric estimates, is bounded by

O
(
n−4/5(lnn)−τ

)
≤ R∗(n) ≤ O

(
(n lnn)−4/5

)
. (3.6)

For a given function f , the distance Φr(f) from a given function f to the cone of

non-positive functions M is defined as Φr(f) = inf{‖f − g‖r : g ∈ M}. Note that

the convergence rate n−4/5 in (3.6) corresponds to the minimal AMISE of the kernel

regression estimator in the case of twice continuously differentiable functions (see Ullah

and Pagan, 1999). Likewise, Ghosal et al (2000) and Dümbgen and Spokoiny (2001)

provide results for the tests of qualitative hypotheses based on the estimation of the

L∞-distance to the cone of non-positive, monotone or convex functions and obtain re-

sults similar to Juditsky and Nemirovski (2002). These findings suggest that unlike

the models comprised of the unconditional moment inequalities or conditional moment

inequalities where covariates have finite support, in the present setup of the conditional

moment restrictions with continuous covariates we cannot expect to achieve a para-

metric convergence rate 1/
√
n for the boundary of the identified set without imposing
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additional parametric assumptions about conditional moment functions that define the

identified set. Therefore, finite sample performance of any inferential procedure based

on nonparametric estimators of conditional moment constraints is going to be inferior

to the finite sample performance of methods proposed in the literature that deal with

unconditional constraints (that can be estimated at parametric rate).

3.1 No shape restrictions

I first start with the case where we do not wish to impose any shape restrictions on

the conditional moment inequalities. Critical values for the test of the null hypothesis

that a candidate parameter value θ belongs to the identified set based on the statistic

Tn(θ) defined in (3.5) are constructed based on the bootstrap approximation to the

distribution of

max

{
max
x∈V j0 (θ)

Ên[mj(Z, θ)|X = x]− E[mj(Z, θ)|X = x]

sj(x; θ)
, j ∈ J

}
(3.7)

where V j
0 (θ) = {x ∈ X : E[mj(Z; θ)|X = x] ≥ 0} 3 and sj(x; θ) is standard error of an

estimator Ên[mj(Z, θ)|X = x]. A multivariate analog of a strong approximation result

for kernel estimators of regression functions can be used to show that under certain

conditions, distribution of (3.7) may be approximated by the distribution of

max

{
max
x∈V j0 (θ)

Γn(x), j ∈ J

}

where {Γn(·), n = 1, . . .} is a sequence of multivariate zero mean Gaussian processes

indexed by X with continuous sample paths and known covariance function. This

implies that the random variable in (3.7) converges in distribution to some stable law

no matter whether or not θ belongs to ΘI . However, if θ does not belong to the identified

set, then the statistic Tn(θ) defined in (3.5) asymptotically goes to plus infinity with

probability one, while the limiting distribution of (3.7) still exists.

Although quantiles of the distribution of (3.7) are not readily available, and in

3With this definition, V j
0 (θ) is indeed a set of zeros of j’th conditional moment function if θ belongs

to the boundary of the identified set ΘI . If θ belongs to the interior of ΘI , then V j
0 (θ) is empty.

Finally, if θ does not belong to ΘI , then V j
0 (θ) is a compact set with a non-empty interior.
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general case sets V j
0 (θ) are unknown4, I start with the lemma that supports the validity

of confidence set for each element of the identified set that is based on quantiles of this

distribution if we substitute V j-a superset for V j
0 (θ)

Lemma 3.1 Suppose that assumptions (A1)-(A3) are satisfied, and the identified set

if given by (3.2). Let Ên[mj(Z, θ)|X = x] be a uniformly consistent estimator of

E[mj(Z, θ)|X = x] on X for each j ∈ J , with sj(x; θ) being the standard error of

this estimator. Let (1− α) be the desired confidence level, α ∈ (0, 1). Let V j
0 (θ) ⊂ V j.

Suppose that q1−α(θ) is defined as

lim
n→∞

P

{
max
j∈J

{
max
x∈V j

Ên[mj(Z, θ)|X = x]− E[mj(Z, θ)|X = x]

sj(x; θ)

}
≤ q1−α(θ)

}
= 1− α

(3.8)

Define Cn,1−α = {θ ∈ Θ : Tn(θ) ≤ q1−α(θ)}, where Tn(θ) is given by (3.5). Then

inf
θ∈ΘI

lim
n→∞

P {θ ∈ Cn,1−α} ≥ 1− α

The intuition behind this lemma is as follows: given a candidate parameter θ, equa-

tion (3.8) gives one-sided (lower) simultaneous confidence bound for true (unobserved)

conditional moment curves that correspond to this parameter value. Then the confi-

dence set Cn,1−α is constructed as the collection of all parameter values such that the

constant zero function c(x) ≡ 0 lies above this lower bound for all conditional moment

functions simultaneously.

In general, an asymptotic approximation of the distribution of (3.7) is not readily

available. One exclusion in the case k = 1 and V j
0 (θ) = X , when Johnson (1982)

shows that under certain conditions a studentized version of the Nadaraya-Watson

kernel estimator allows a strong approximation by a sequence of Gaussian processes.

Then one can apply extremal types theorem for stationary processes in Leadbetter and

Rootzen (1988) to obtain an approximation of the distribution of the supremum of the

Gaussian process with Extreme Value Type I distribution. This approximation is known

to have a slow (logarithmic in n) rate of convergence (see Hall 1979, 1991), but one can

use the result due to Konakov and Piterbarg (1984) that provides a refinement to this

4Although the set {x ∈ X : En[mj(Z; θ)|X = x] ≥ 0} is a consistent estimator of the set V j
0 (θ)

when the latter is nonempty, we cannot simply plug-in this estimator since the limiting distribution
of (3.7) is discontinuous in {V j

0 (θ), j ∈ J}. Moreover, if V j
0 (θ) is a singleton, in small samples its

estimator will always be a compact set with a non-empty interior.
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asymptotic approximation that converges at polynomial rate. For the comparison of

two approximations in the context of testing for monotonicity, see Ghosal et al (2000),

Lee, Linton and Whang (2007).

I do not want to rule out the possibility of having more that one conditional moment

constraint that defines the identified set. Therefore, I resort to the approach due to

Hall (1993) and estimate quantiles q1−α(θ) by the quantile of bootstrap version of (3.7)

for a kernel estimator of conditional moment functions. I start with introducing some

notation. Let f(x) denote the density of X, and let σ2
j (x; θ) denote the conditional

variance of the error term

uji = mj(Zi, θ)− E[mj(Zi, θ)|Xi = x]

I employ a kernel estimator of the conditional moment functions to construct the test

statistic Tn(θ). Given the choice of bandwidth h and kernel function K, the kernel

estimator for the j′th conditional moment constraint is defined by

Ên[mj(Zi, θ)|Xi = x] =

n∑
i=1

mj(Zi, θ)K((x−Xi)/h)

n∑
i=1

K((x−Xi)/h)
(3.9)

Denote cK =
∫
K2(u)du and define

Kh(u) =
1

h
K(u/h)

f̂(x) = n−1

n∑
i=1

Kh(x−Xi)

σ̂2
j (x; θ) = n−1

n∑
i=1

(mj(Zi, θ))
2Kh(x−Xi)/f̂(x)−

(
Ên[mj(Zi, θ)|Xi = x]

)2

If we choose the bandwidth and the kernel in such a way that the estimator is asymp-

totically unbiased, we can estimate its variance at any given x with

sj(x, θ) =
cK σ̂

2
j (x; θ)

nhf̂(x)
(3.10)

In order to obtain an asymptotic approximation of the test statistic (3.5) for a kernel
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estimator Ên[mj(Z, θ)|X = x] we need to impose some regularity conditions that deal

with the smoothness of conditional moment functions and moments of random variable

mj(Z, θ)|X.

(R1) Density f(x) is bounded away from zero on X .

(R2) For any θ ∈ Θ and any j ∈ J , functions E[mj(Z; θ)|X = x], f(x) and σ2
j (x; θ)

are twice continuously differentiable on X .

(R2) For any θ ∈ Θ and j ∈ J , E
[
|mj(Z; θ)|2+p |X = x

]
≤ Ap <∞ for some p > 0.

To estimate quantiles of distribution form Lemma 3.1, I propose the following boot-

strap procedure:

1. Estimate conditional moment functions with (3.9). Choose τn = (2 log log n)1/2.

2. Choose a small ε > 05 and for each j, construct an estimator of the superset of

V j
0 (θ) as

V̂ j
0 (θ) =

{
x ∈ X : Ên[mj(Zi, θ)|Xi = x] ≥ −ε− τnsj(x, θ)

}
(3.11)

3. Construct R bootstrap samples of size n by sampling randomly with replacements

from the data (Zi, Xi).

4. For each bootstrap sample, estimate conditional moment functions with (3.9) and

denote those estimates Ê∗n[mj(Zi, θ)|Xi = x]. Similarly, calculate s∗j(x, θ) for each

bootstrap sample. Finally, compute bootstrap analog of (3.7):

B∗n(θ) = max
j∈J

max
x∈V̂ j0 (θ)

Ê∗n[mj(Z, θ)|X = x]− Ên[mj(Z, θ)|X = x]

s∗j(x; θ)
(3.12)

5. Let q̂Bn,1−α(θ) be (1− α) quantile of the empirical distribution of B∗n(θ).

Theorem 3.2 Let assumptions (A1)-(A3) and (R1)-(R3) hold. Suppose that

1. nh5 log n→ 0 and nh3 →∞ as n→∞;

5I propose to choose ε > 0 so that first even if V j
0 (θ) is a singleton, its superset has a nonempty

interior as well as the estimator of the superset. And second, this way we can set C = 1 in τn =
C(log log n)1/2 and thus avoid choosing a particular value for this constant.
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2. K is a differentiable kernel that vanishes outside the interval [−1, 1].

Define CB
n,1−α =

{
θ ∈ Θ : Tn(θ) ≤ q̂B1−α(θ)

}
, where Tn(θ) is given by (3.5). Then

inf
θ∈ΘI

lim
n→∞

P
{
θ ∈ CB

n,1−α
}
≥ 1− α.

Condition nh5 log n→ 0 ensures that kernel estimator is asymptotically unbiased, and

therefore we do not need to correct for the bias when constructing simultaneous lower

confidence bound for conditional moment functions. Choice of a sequence {τn, n ∈ N}
follows from a law of iterated logarithm for Nadaraya-Watson regression estimator (see

Härdle, 1984). I choose to undersmooth and set the bias asymptotically to zero by

requiring nh5 log n → 0 rather than estimating the bias because Hall (1993) shows

that inaccuracy of bias-correction procedure may affect the accuracy of the bootstrap

approximation. Finally, we choose to estimate an ε-superset {x ∈ X : |E[mj(Z, θ)|X =

x]| < ε|} of V j
0 (θ) rather than the set of zeros itself because statistic Tn(θ) has different

limiting behavior depending on whether the set of zeros of conditional moment functions

for a given θ is finite or a continuum.

The method proposed in Theorem 3.2 will lead to conservative coverage in small

samples if no θ exists such that for this parameter value all binding conditional moment

functions are identical zeros for a continuum of points in the support. Consider a

case when V j
0 (θ) is a singleton for some j (this case is a subject of the discussion in

the next section). Due to continuity of conditional moment functions, for any finite n

estimator V̂ j
0 (θ) will be a segment or a collection of segments, but not a singleton. Since

the situation when no such parameter value exists is not implausible, next subsection

attempt to improve the coverage under the assumption that for each θ all binding

conditional moments (there may be none) have unique maximum (which is equivalent

to the assumption that all binding conditional moment functions have unique zero

point).

3.2 Conditional moment functions with unique maximum

Suppose that the researcher has reasons to believe that for any θ in the identified set

each of the binding conditional moment functions (there might be none if θ belongs

to the interior of the identified set) equals zero only at a single point in X . Given

some smoothness assumptions about conditional moments, this belief is equivalent to

the statement that for any θ on the boundary of the identified set each of the binding
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constraints for this parameter value has a unique global maximum, and the size of this

maximum is equal to zero.

As an illustration of the economic model where one might expect the binding con-

ditional moments to have a unique maximum, consider a game-theoretic model with

multiple equilibria, such as e.g. entry-exit games. Tamer (2003) shows that in the ab-

sence of equilibrium selection mechanism, there may exist a set of parameter values that

are consistent with more than one outcome. For example, let yi denote the observed

outcome of an entry-exit game in market i, and let xi be a vector of profit shifters for all

players in market i. Denote by Y and X the supports of yi and xi, respectively. Then

given a parametric model for the probability of outcome y, P (y|x; θ), the possibility of

multiple equilibria implies that the identified set for θ is characterized by

P0(y|x)− P (y|x; θ) ≤ 0, ∀(y, x) ∈ (Y ,X ), (3.13)

where P0(y|x) is the true (observed) probability of outcome y. For the detailed pre-

sentation of this model, see Andrews, Berry, and Jia (2004). Because the parametric

model provides only an approximation for the true more complicated data generating

process, one cannot always expect to find θ such that (3.13) holds with equality for all

(y, x) ∈ (Y ,X ).

Note that the set V j
0 (θ) = {x ∈ X : E[mj(Z, θ)|x] ≥ 0} is also the argmax set for the

j′th conditional moment functions given a candidate value θ belongs to the set ΘI . The

following list of assumptions summarizes shape restrictions under consideration in this

subsection, restrictions on location of the argmax set, and some additional smoothness

requirements for the behavior of conditional moment functions in the neighborhood of

the argmax sets.

(UM1) (Unique mode) For any parameter θ in the identified set and any j ∈ J the

argmax set V j
0 (θ) is a singleton: V j

0 (θ) = {xj0(θ)}.

(UM2) (Additional smoothness in the neighborhood of argmax) There exist some ε >

0 such that each conditional moment function is at least 3 times continuously

differentiable in each interval [xj0(θ)− ε, xj0(θ) + ε]. Also, f(x) is at least 3 times

continuously differentiable on each interval [xj0(θ) − ε, xj0(θ) + ε]. Finally, the

Jacobian matrix of j′th conditional moment function, evaluated at the argmax,
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is negative definite: for any vector u 6= 0,

u′

∂2E[mj(Z; θ)|X = x]

∂x∂x′

∣∣∣∣∣
x=xj0(θ)

u < 0.

(UM3) (Location of the argmax) For any parameter θ in the identified set, xj0(θ) be-

longs to the interior of X for j ∈ J .

Assumption (UM1) formally states that for any parameter on the boundary of the

identified set there is a unique value of covariate vector X for which some of the moment

inequalities turn into equalities. Assumption (UM2) ensures the appropriate behavior

of conditional moment functions in some neighborhood of the argmax set that allows to

construct an asymptotic Gaussian approximation of for the distribution of test statistic

Tn(θ). Finally, assumption (UM3) rules out the case when the maximum is attained on

the boundary of the set X in order to avoid possible boundary effects in the case when

the compact set X (over which we want the conditional moment constraints to hold)

coincides with the support of X. This assumption can be removed if X is a proper

subset of a continuous support of X.

In this setting we assume that all binding conditional moment functions have unique

maximum, and therefore I will focus on asymptotic approximation of the behavior of

the conditional moment functions locally (i.e. around the location of the argmax) rather

than globally, as it was done in previous subsection. Therefore, instead of considering

the maximum of the studentized version of kernel estimator (given by Tn(θ) in (3.5)),

I will analyze the studentized version of the maximum, given by

T̃n(θ) = max


[
max
x∈X

Ên[mj(Zi, θ)|Xi = x]

]
+

sj(x̂0(θ), θ)
; j ∈ J

 (3.14)

where x̂0(θ) = arg max
x∈X

Ên[mj(Zi, θ)|Xi = x].

Next theorem provides this asymptotic approximation, and inferential method pre-

sented in this section is based on this result.

Theorem 3.3 Let assumptions (A1)-(A3), (R1)-(R3) and (UM1)-(UM3) hold. Sup-

pose that
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1. nh7 → λ2 ≥ 0 and nh5 →∞ as n→∞;

2. K is a symmetric, twice continuously differentiable third order kernel that vanishes

outside the interval [−1, 1].

Then for any θ ∈ Θ

√
nh(max

x∈X
Ên[m(Zi, θ)|Xi = x]−max

x∈X
E[m(Zi, θ)|Xi = x])

d→ N(0,Σ(θ)), (3.15)

where

(Σ(θ))j,l =

 0 if xj0(θ) 6= xl0(θ)

cK
E[Wjl(Z,X,θ)|X=xj0(θ)]

f(xj0(θ))
otherwise

(3.16)

and

Wjl(Z,X, θ) = (mj(Z, θ)− E[mj(Z, θ|X)])(ml(Z, θ)− E[ml(Z, θ|X)])

This result is an extension of Theorem 4.1 in Ziegler (2003). Theorem 3.3 claims

that under certain conditions on the choice of a bandwidth and kernel function, the es-

timator of the size of the maximum of conditional moment constraints is asymptotically

normally distributed with zero mean. Here we need nh5 → ∞ to deliver consistency

of the estimates of the derivatives up to second order; we also need nh7n → λ2 ≥ 0

to achieve a necessary rate of convergence of x̂j0(θ) = arg max
x∈X

Ên[m(Zi, θ)|Xi = x] to

xj0(θ). Assumption (UM2) that requires conditional moment functions and density of

X to be three times continuously differentiable in some neighborhood of the maxima is

crucial here, since it allows us to eliminate the asymptotic bias of the kernel estimator

of a maximum by using a third order kernel while allowing nh5 →∞. Finally note that

if conditional moment functions have different locations of the global maximum, the

variance-covariance matrix (3.16) becomes diagonal. Appendix provides a consistent

estimator of Σ(θ).

Under the null hypothesis that θ ∈ ΘI , we have:

• max
x∈X

E[m(jZi, θ)|Xi = x] < 0 for j ∈ J if θ belongs to the interior of ΘI ;

• max
x∈X

E[m(jZi, θ)|Xi = x] ≤ 0 for j ∈ J ,

and for some j′ ∈ {1, 2}max
x∈X

E[m(j′Zi, θ)|Xi = x] = 0 if θ belongs to the boundary

of ΘI .
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This observation together with the asymptotic approximation of Theorem 3.3 allow us to

test the null hypothesis that a candidate parameter value θ belongs to the identified set

using statistic T̃n(θ) introduced in (3.14). Basically, this result reduces the continuum

of moment inequalities to a finite number of constraints evaluated at certain points, and

inferential theory for this case is readily available in the literature. The only difference

is in the estimator of moment conditions. It can be shown that the limiting distribution

of T̃n(θ) depends on the number of binding conditional moment constraints for the value

of θ. In particular, if θ belongs to the interior of the identified set, then T̃n(θ) is op(1).

If θ belongs to the boundary of the identified set, then T̃n(θ) is Op(1) and is distributed

as the maximum of the [Zb(θ)(θ)]+, where b(θ) is the number of binding constraints for

this θ and Zb(θ) is b-dimensional Gaussian random variable. We cannot directly plug

in any consistent estimator of b(θ) since the limiting distribution is discontinuous in

b(θ). Therefore, I propose an asymptotic approximation analogous to the one proposed

in Bugni (2007) for the case of unconditional moment inequalities. In this case the

quantiles of the approximating distribution need to be obtained by simulations. The

procedure is as follows: for a given candidate θ

1. Choose τn = (2 log log n)1/2. Let Σ̂(θ) be a consistent estimator of variance-

covariance matrix in Theorem 3.3.

2. Draw a samples of size R from N(0, Σ̂(θ)). Let Zr(θ) be the r’th element of this

sample. Compute

Gr,n(θ) = max

 [Zr
j (θ)]+(

Σ̂(θ)
)
jj

· 1

{
Ên[m(Zi, θ)|Xi = x̂j0(θ)]

sj(x̂
j
0(θ), θ)

≥ −τn

}
, j ∈ J


3. Define qGn,1−α(θ) as the (1− α) quantile of the empirical distribution of Gr(θ).

The choice of sequence {τn, n ∈ N} comes from the a law of iterated logarithm for

kernel estimators introduced in Härdle (1984). This procedure is analogous to the

generalized moment selection procedure introduced in Andrews and Soares (2007) and

Chernozhukov, Hong and Tamer (2007).

Theorem 3.4 Let the assumptions of Theorem 3.3 hold.

Define CG
n,1−α =

{
θ ∈ Θ : T̃n(θ) ≤ q̂G1−α(θ)

}
, where T̃n(θ) is given by (3.14).
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Then inf
θ∈ΘI

lim
n→∞

P
{
θ ∈ CG

n,1−α
}

= 1− α.

It seems possible to avoid estimating variance-covariance matrix and use wild boot-

strap to approximate distribution of T̃n(θ) under the null hypothesis. The procedure is

somewhat analogous to the method of testing strict monotonicity of a function proposed

in Bowman, Jones and Gijbels (1998). It relies on the wild bootstrap approximation

(see e.g. Wu, 1986) and is given here as a conjecture. For a given candidate θ

1. Choose τn = (2 log log n)1/2. Estimate residuals by ûji = mj(Zi, θ) −
Ên[m(Zi, θ)|Xi].

2. Draw a random sample {Ci, i = 1, . . . , n} from the distribution that puts mass

(
√

5 + 1)/2
√

5 on (1−
√

5)/2 and mass (
√

5− 1)/2
√

5 on (1 +
√

5)/2.

3. Generate bootstrap sample {(Y ∗i (θ), Xi)i = 1, . . . , n} as

Y ∗ij(θ) = Ên[m(Zi, θ)|Xi]− Ên[m(Zi, θ)|Xi = x̂j0(θ)] · pj(θ, τn) + Ciûji

where

pj(θ, τn) = 1

{
Ên[m(Zi, θ)|Xi = x̂j0(θ)]

sj(x̂
j
0(θ), θ)

≥ −τn

}

4. Compute T̃ ∗r,n(θ) = max


[
max
x∈X

Ên[Y ∗ij(θ)|Xi=x]

]
+

s∗j (x̂∗0(θ),θ)
; j ∈ J


5. Repeat steps 1-3 R times. Calculate q̂wbn,1−α as (1 − α) quantile of empirical dis-

tribution of {T̃ ∗r,n(θ), r = 1, . . . , R}. Define Cwb
n,1−α =

{
θ ∈ Θ : T̃n(θ) ≤ q̂wb1−α(θ)

}
Unlike the procedure based on the asymptotic approximation, the wild bootstrap pro-

cedure does not require to estimate the whole matrix Σ(θ), just its diagonal elements.

The covariance structure is preserved by sampling the whole vector of residuals. To

sum up, in this section I considered the case when set of zeros V j
0 (θ) is a singleton and

this allowed us to estimate it directly, and not the superset of it. Next section presents

another example where we can estimate the set of zeros directly.
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3.3 Parametric conditional moment restrictions

Here I consider the case when the researcher is willing to assume a parametric form

of conditional moment constraints: E(mj(Zi, θ)|Xi = x) = Mj(x, θ, β). Many of the

parametric specifications for conditional moment functions that can arise in econometric

models are separated in the parameters θ and β, i.e.

Mj(x, θ, β) = hj(x, θ) + qj(x, β) (3.17)

and here I will focus only on such models. Foe example, in the context of the interval

outcome data, one can assume that:

E(Y0|X = x) = q0(xβ0);

E(Y1|X = x) = q1(xβ1);

E(Y |X = x) = xθ

and the identified set is defined as ΘI = {θ ∈ Θ : q0(xβ0)− xθ ≤ 0 and xθ − q1(xβ1) ≤
0 for all x ∈ X}. Both q0 and q1 are known functions, and under some regularity

assumptions β0 and β1 can be estimated at parametric rate.

As in the previous section, the inference method will be based on the approximation

to the distribution of the statistic

Tn(θ) = max

max
x∈X

[
Ên[mj(Zi, θ)|Xi = x]

]
+

sj(x, θ)
; j ∈ J

 (3.18)

only in this case estimators of conditional moment constraints are
√
n uniformly con-

sistent on X . The following theorem provides a basis for an asymptotic approximation

to the distribution of T̃n(θ), with the second claim following directly from Theorem 3.1

in Shapiro (2000).

Theorem 3.5 Let
√
n(β̂n − β)

d→ N(0,Σβ). Suppose that B is a compact set such

that β ∈ B, and for any b ∈ B, function f(x, b) is twice continuously differentiable on

X . Then stochastic process Zn(x) =
√
n(f(x, β̂) − f(x, β)) converges in the space of

all continuous functions on X to a continuous Gaussian process Z∞(x) with a known
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covariance function:

Zn(x) = Z∞(x) + op(1)

Moreover, if V (β) = arg max
x∈X

f(x, β), then

√
n(max

x∈X
f(x, β̂n)−max

x∈X
f(x, β))

d→ max
x∈V (β)

Z∞(x)

Similar result is also obtained in Chernozhukov, Lee, and Rosen (2009). Based on this

result, I propose the following procedure given β̂ - a consistent estimator of β in (3.17)

such that
√
n(β̂n − β)

d→ N(0,Σβ).

1. Let τn = (2 log log n)1/2.

2. Draw a sample {Zr, r = 1, . . . , R} from distribution N(0,Σβ). Define w(x) =(
∂q1(x,β̂)
∂β

, ∂q2(x,β̂)
∂β

)′
and νr(x) = w(x)Zr.

3. Let V̂ j
0 (θ) = {x ∈ X : hj(x, θ) + qj(x, β̂) > −τn max

x∈X
sj(x)}, where sj(x) =

(1/n)1/2 (d(x)Σβd(x)′)jj.

4. Calculate Λr(θ) = max
j∈J

max
x∈V̂ j0 (θ)

νr,j(x)

5. Define q̂G1−α(θ) as (1− α) quantile of the empirical distribution of Λr(θ).

6. Calculate Cn,1−α = {θ ∈ Θ : Tn(θ) ≤ q̂G1−α(θ)}.

3.4 Further Issues

Uniform validity: Although uniform validity of the inference procedure is beyond

the scope of this paper, it seems plausible that under some restrictions on the family

of data generating processes (DGP) P the proposed bootstrap procedure is uniformly

consistent. For example, Kim (2009) also requires to impose certain restrictions on the

family of the DGP for the subsampling to be asymptotically valid. In the context of

shape restrictions, one can apply result if Andrews and Guggenberger (2007) to show

that the asymptotic approximation is uniformly valid if we restrict the family of DGP

to have the Jacobian matrices of conditional moment functions evaluated at the argmax

to be bounded away from zero.
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Which procedure to choose: In general, it might be advisable to use both infer-

ence procedures. While the bootstrap procedure may lead to a conservative coverage is

small samples if the conditional moment functions are non-flat, it is always consistent.

On the other hand, the procedure based on the shape restrictions of conditional moment

functions leads to undercoverage if these restrictions are violated, it performs accurately

in small samples when shape restrictions are indeed true. Doing both procedures will

provide the researcher with a benchmark on how wide might be the confidence set for

the data at hand.

Finite vs infinite number of moment inequalities: As it was discussed above, if

a researcher is not willing to loose any information by transforming a model into a finite

set of unconditional moment inequalities, the he cannot hope to achieve a parametric

convergence rate that the one have in the case of a finite set of unconditional moment

inequalities. In other words, confidence sets based on finite number of moments may be

wide due to the loss of information, and the confidence sets based on the infinite number

of conditional moment inequalities may be wide due to the slow rate of convergence of

the nonparametric estimator. Menzel (2009) also points out to this trade-off between

the convergence rate and the number of moment inequalities. It seems that in the cases

when conditional moment functions are highly correlated across j, one might loose a lot

of information by converting the model into the finite number of conditional moment

inequalities. On the other hand, if the degree of dependence among the conditional

moment functions across j is low, it might be preferable to transform the model into a

finite number of inequalities and use the advantage of the fast parametric convergence

rate in this case.

4 Monte Carlo Simulations

In this section, I use the setup of Example 1 (parametric regression with interval out-

come) to evaluate finite sample performance of the inferential methods proposed in the

paper. In particular, I assume that X ∈ R, so that d = 1, and the conditional mean of

Y |X = x is a linear function of x:

E[Y |X = x] = β0 + β1x.
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The parameter vector β = (β0, β1) is partially identified since only ([Y0, Y1], X) are

observed, with Pr {Y ∈ [Y0, Y1]} = 1 and Y0 is strictly smaller than Y1. To illustrate

the differences in inference with curved constraints (unique global maximum) vs flat

constraints, I use the following designs for conditional distributions of interval outcome,

[Y0, Y1].

Design 1: X is uniformly distributed on [−0.28, 1.12]. Given X = x, Y0 and Y1

are generated as Y0 = 5x − 4(x − 1/2)2 + ε and Y1 = 2 + 5x + 4(x − 1/2)2 + ε, where

ε ∼ N(0, 1) and is independent of X. The identified set is given by

ΘI = {β ∈ Θ : E[Y0|X = x] ≤ β0 + β1x ≤ E[Y0|X = x] for any x ∈ [0, 1]} . (4.1)

Figure 1.

Design 2: X is uniformly distributed on [0, 1]. Given X = x, Y0 and Y1 are

generated as Y0 = 1/2 + 3x + ε and Y1 = 2 + 7x + ε, where ε ∼ N(0, 1) and is

independent of X. The identified set in this case is also given by (4.1). Figure 2.

The confidence sets proposed in the paper are based on pointwise testing procedure.

Therefore, to evaluate the performance of the inference procedures proposed in the

paper, I first need to choose a number of points in the parameter space. Corollaries

3.4, 3.6 and 3.10 suggest that any point in the identified set will be covered with a

probability that is no less than the desired coverage level 1− α, In particular, for any

point in the interior of the identified set, the coverage probability converges to one, while

for some (or all) points on the boundary of the identified set, the coverage probability

converges to 1 − α. Finally, the coverage probability for points outside the identified

set converges to zero. Therefore, for each design I present simulation results for the set

of parameter values that include points on the boundary of the identified set, points

in the interior of the identified set, and points that do not belong to the identified set.

In both designs, only one out of two constraints can be binding, so we do not need to

estimate the number of binding constraints.

Finally, for both designs, I consider the number of observation n = {100, 500, 1000}
and confidence level 1 − α = {0.75, 0.85, 0.95}. I take independent draws of xi
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from the corresponding uniform distribution, and εi ∼ N(0, 1) to simulated the data

{([y0,i, y1,i], xi)}ni=1. The number of Monte Carlo replications is 1000, number of boot-

strap samples is 500.

4.1 Design 1

In the setup of the Design 1, corresponding conditional moment inequalities have a

unique global maximum. Therefore, I use inferential procedure described in Section 3.1,

which is based on the Normal limiting distribution. In order to estimate conditional

moment constraints, the bandwidth h = 1.7n−1/6.5 and a second order kernel K(u) =

(15/32)(7u4 − 10u2 + 3)I(|u| ≤ 1) are used. Table 4.1 presents empirical coverage

probabilities for different points in the parameter space. Here β = (−3/4, 7) belongs

to the boundary of the identified set, while β = (−1/2, 7) is a point in the interior of

the identified set. Points β = (−1, 7) and β = (−5/4, 5) do not belong to the identified

set, but while the line y = −1 + 7x crosses the lower conditional moment constraint

E[Y0|x] = 5x − 4(x − 1/2)2), the line y = −5/4 + 5x lies completely outside the

area between upper and lower conditional moment constraints. The parameter value

β = (−1, 9) belongs to the boundary of the identified set. However, in a contrast to

assumption (S1), the distance between the line y = −1 + 9x and the lower conditional

moment constraint is minimized (and equal to zero) at the boundary of the set [0, 1].

Still, as one can see from Table 4.1, the proposed inferential procedure still provides

satisfactory results in this case.

Table 4.1: Coverage probability for β
Coverage 0.75 0.85 0.95

Sample size 100 500 1000 100 500 1000 100 500 1000

Asymptotic approximation

β = (−3/4, 7) 0.8870 0.8255 0.7640 0.9305 0.8965 0.8425 0.9700 0.9625 0.9435

β = (−1/2, 7) 0.9965 1.0000 1.0000 0.9985 1.0000 1.0000 1.0000 1.0000 1.0000

β = (−1, 7) 0.2870 0.0080 0.0000 0.4120 0.0145 0.0005 0.6185 0.0580 0.0010

β = (−1, 9) 0.5705 0.6645 0.6985 0.6775 0.7865 0.8280 0.8175 0.9215 0.9405

β = (−5/4, 5) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Subsampling approximation, β = (−3/4, 7)

an = n/5 0.4605 0.3290 0.5415 0.6150 0.3840 0.7035 0.6515 0.4460 0.8650

an = n/7 0.5495 0.2350 0.4005 0.5910 0.1965 0.5095 0.5985 0.3235 0.6260

an = n/10 0.5370 0.2120 0.2335 0.5345 0.1925 0.2295 0.5290 0.5260 0.2990
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4.2 Design 2

In the setup of Design 2, conditional moment constraints are linear functions of x, and

therefore there is a continuum of points that maximize conditional moment inequalities.

Hence, the inference procedure for this case is based on bootstrap approximation. To

estimate conditional moment constraints, I use the bandwidth h = n−1/4.5 and kernel

function K(u) = (15/16)(1− u2)I(|u| ≤ 1). Table 4.2 shows the empirical coverage for

a set of point in the parameter space. In particular, points β = (2, 7) and β = (1/2, 3)

belong to the boundary of the identified set with constraints are binding everywhere on

[0, 1] . Point β = (2, 5) also belongs to the boundary of the identified set, but constraints

are binding in a single point on the boundary of [0, 1]. Finally, points β = (−1/2, 8)

and β = (2, 15/2) do not belong to the identified set. The difference is that the line

with y = −1/2 + 8x crosses the area between upper and lower constraints, while the

line y = 2 + (15/2)x lies completely outside this area.

Table 4.2: Coverage probability for β
Coverage 0.75 0.85 0.95

Sample size 100 500 1000 100 500 1000 100 500 1000

Bootstrap approximation

β = (2, 7) 0.6645 0.6150 0.6160 0.8230 0.7640 0.7615 0.9630 0.9440 0.9445

β = (1/2, 3) 0.5385 0.5940 0.6310 0.7235 0.7575 0.7915 0.9430 0.9410 0.9485

β = (2, 5) 0.9915 0.9990 1.0000 0.9970 1.0000 1.0000 0.9995 1.0000 1.0000

β = (1, 5) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

β = (−1/2, 8) 0.2220 0.0000 0.0000 0.3695 0.0003 0.0000 0.6925 0.0050 0.0000

β = (2, 15/2) 0.0160 0.0000 0.0000 0.0460 0.0000 0.0000 0.2315 0.0000 0.0000

Subsampling approximation, β = (2, 7)

m = n/5 0.8310 0.7480 0.7380 0.9470 0.8920 0.8795 0.9950 0.9860 0.9830

m = n/7 0.8440 0.7365 0.7165 0.9525 0.8735 0.8620 0.9970 0.9800 0.9765

m = n/10 0.8650 0.7255 0.6625 0.9715 0.8655 0.8365 1.0000 0.9835 0.9685

β = (5/4, 2) 0.9215 0.9575 0.9820 0.9665 0.9760 0.9800 0.9960 0.9970 0.9970

Finally, Table 4.3 illustrates “misspecified” case, when inference procedure that is based

on the assumption that the conditional moment constraints can have flat parts is ap-

plied to the data generated by the model with non-flat constraints (Design 1), and

when inference procedure that is based on the assumption that the conditional moment

constraints can have unique binding points is applied to the data generated by the

model with flat constraints (Design 2). Here we see that bootstrap approximation over-

covers in small samples if constraints are non-flat, while the asymptotic approximation
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severely undercovers when constraints are flat. Moreover, in the case of asymptotic

approximation with flat constraints leads to inconsistent inference asymptotically.

Table 4.3: ”Misspecified” models
Coverage 0.75 0.85 0.95

Sample size 100 500 1000 100 500 1000 100 500 1000

Design 2, but normal approximation is used.

β = (2, 7) 0.4120 0.3700 0.3220 0.5885 0.5395 0.5165 0.8205 0.7975 0.7780

Design 1, but bootstrap approximation is used

β = (−3/4, 7) 0.9360 0.9640 0.9820 0.9890 0.9960 0.9940 0.9960 0.9970 0.9970

5 Conclusion

In this paper I present an approach to constructing confidence sets for each element of

partially identified parameters defined by the finite number of conditional moment in-

equalities. The paper goes beyond the assumption that the conditioning covariates are

discrete, and introduces inference procedure applicable in the case where the identified

set of the parameter values is defined by a number of conditional moment inequalities

with continuously distributed covariates. The inference procedure is based on the supre-

mum statistic for a Nadaraya-Watson estimator of the conditional moment functions

that define the set of constraints.

I consider three main scenarios and provide a way to construct confidence sets in

each of the scenarios: no restrictions on the conditional moment functions; conditional

moment functions have unique maximums; conditional moment functions are specified

parametrically. Using Monte Carlo simulations I show that in small samples ignoring

the shape of the constraints may lead to a conservative coverage for each element of the

identified set. I also show that in small samples confidence sets based on subsampling

approximation may result in significant undercoverage when conditional moment func-

tions on the boundary of the identified set have peaks. If the researcher is willing to

assume that conditional moment functions have unique maximums for the parameter

values on the boundary of the identified set, I show that the problem essentially reduces

to the problem with finite number of inequalities, evaluated at certain point (estimates

of the location of the maximum) and one can use an analog of the Generalized Moment

Selection method of Andrews and Soares (2007) to construct confidence sets. Finally,

using Monte Carlo simulations, I show that in small samples there is a trade-off between
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coverage and assumptions about the shape of the constraints.

The findings of this paper leave open several questions. Our Monte Carlo exercise

shows that in small samples the coverage of confidence sets based on a subsampling

approximation is greatly affected by the shape of conditional moment functions that de-

fine the constraints. This finding can be explained by an observation that if conditional

moment functions have peaks, the behavior of the supremum statistic will be mostly

determined by the observations in the small neighborhood of the peak. Therefore, with

small sample sizes subsampling approximation may fail to capture this behavior due to

insufficient number of observation around the location of the peak. This observation is

also relevant for the confidence sets proposed in Kim (2008). It would be of interest to

see to what extent the approach proposed by Kim suffers the same drawback.

Another interesting question would be to investigate to what extent transforming

conditional inequalities into a finite number of unconditional inequalities affects the

trade-off between the size of the identified set in this case and the size of the confidence

sets. In general, when transforming conditional inequalities into unconditional ones we

loose some information, which leads to a larger identified set. However, in small samples

confidence set for the “unconditional” identified set based on parametric estimation of

unconditional moments can be expected to be tighter than confidence sets for the

“conditional” identified set based on nonparametric estimation of conditional moment

functions.

6 Appendix

Notation: let {(Y1i, Y2i, Xi), i = 1, . . . , n} be an i.i.d. sample. Define

f(x) marginal density of X

µj(x) = E(Yj|X = x), j ∈ J

µ̂j(x) estimator of µj(x)

σ2
j (x) = E((Yj − µj(x))2|X = x)

σ̂2
j (x) estimator of σ2

j (x)

xj0 = arg max
x∈X

µj(x)
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x̂j0 = arg max
x∈X

µ̂j(x)

cK =
∫
K2(u)du

Kh(u) = 1
h
K(u/h)

Proof of Lemma 3.1. For any fixed θ ∈ ΘI , any j ∈ J and any constant q, the event

A1 =

{
max
x∈V j

Ên[mj(Z,θ)|X=x]−E[mj(Z,θ)|X=x]

sj(x,θ)
≤ c

}
implies A2 =

{
max
x∈X

Ên[mj(Z,θ)|X=x]

sj(x,θ)
≤ c

}
since if θ ∈ ΘI , then E[mj(Z, θ)|X = x] ≤ 0. Therefore, for any q the event A′1 ={

max
j∈J

max
x∈V j

Ên[mj(Z,θ)|X=x]−E[mj(Z,θ)|X=x]

sj(x;θ)
≤ q

}
implies event A′2 = {Tn(θ) ≤ q}. So, for

any θ ∈ ΘI ,

P {Tn(θ) ≤ qn,1−α} ≥ P

{
max
j∈J

max
x∈V j

Ên[mj(Z, θ)|X = x]− E[mj(Z, θ)|X = x]

sj(x; θ)
≤ qn,1−α

}
,

where the latter probability is equal to (1−α) by definition of the quantity qn,1−α. This

concludes the proof.2

Proof of Theorem 3.2. Suppose first that the collection of sets {V̂ j
0 (θ), j ∈

J} is known. For any k-dimensional vector t, consider Wn(x, θ) =∑
j∈J

tj
Ên[mj(Zi;θ)|Xi=x]−E[mj(Zi;θ)|Xi=x]

sj(x;θ)
. We can use lemmas A.2-A.6 in Johnston (1982)

to show that under the assumptions of Theorem 3.2 there exists a sequence of station-

ary mean zero Gaussian processes with continuous sample paths {Γn(x, θ), n ∈ N} such

that sup
x∈X
|Wn(x, θ) − Γn(x, θ)| = op((log n)−1/2). Since the choice of vector t was arbi-

trary, there exists a sequence of k-dimensional stationary mean-zero Gaussian processes

{Γ̃n(x, θ), n ∈ N} such that

sup
x∈X ,j∈J

∥∥∥∥∥Ên[mj(Zi; θ)|Xi = x]− E[mj(Zi; θ)|Xi = x]

sj(x; θ)
− Γ̃j,n(x, θ)

∥∥∥∥∥ = op((log n)−1/2)

Observe that the functional M(g) = max{max
x∈V j

gj(x), j ∈ J} is Lipschitz continuous on

C(X ). Therefore, we can approximate the distribution of

Qn(θ) = max
j∈J

max
x∈V j0 (θ)

Ên[mj(Z, θ)|X = x]− E[mj(Z, θ)|X = x]

sj(x; θ)
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by the distribution of M
(

Γ̃n(·, θ)
)

= max

{
max
x∈V j0 (θ)

Γj,n(x, θ), j ∈ J

}
. In the case k = 1

the distribution of this random variable is known to converge to the extreme value type

I distribution, although the rate of convergence is slow (see Hall 1979, 1991). We can

use result in Hall (1993) to show that one can approximate distribution of M (Γn(·, θ))
by the bootstrap distribution. I will now prove that P

{
lim inf
n→∞

{
V j
ε (θ) ⊆ V̂ j

0 (θ)
}}

= 1,

where V j
ε (θ) = {x ∈ X : |E[mj(Z, θ)|X = x]| ≤ ε}.

The event

{
max
x∈V j0 (θ)

|Ên[mj(Z,θ)|X=x]−0|
sj(x,θ)

< ε
min

x∈V j0 (θ)

sj(x,θ)
+ τn

}
implies the event{

max
x∈V j0 (θ)

|Ên[mj(Z,θ)|X=x]−ε|
sj(x,θ)

< τn

}
, which in turn implies the event

{
V j

0 (θ) ⊂ V̂ j
ε (θ)

}
.

By a law of iterated logarithms for kernel regression estimator, we have

P

lim inf
n→∞

 max
x∈V j0 (θ)

∣∣∣Ên[mj(Z, θ)|X = x]− 0
∣∣∣

sj(x, θ)
<

ε

min
x∈V j0 (θ)

sj(x, θ)
+ τn


 = 1

Therefore, P
{

lim inf
n→∞

{
V j
ε (θ) ⊆ V̂ j

0 (θ)
}}

= 1 and V j
0 (θ) ⊂ V j

ε (θ). Therefore, we can

use V̂ j
0 (θ) instead of V j

0 (θ) in the bootstrap procedure, and because V j
0 (θ) ⊂ V j

ε (θ), by

Lemma 3.1 bootstrap distribution asymptotically stochastically dominates distribution

of M (Γn(θ)). 2

Proof of Theorem 3.3. To prove this theorem, I will first introduce two auxiliary

lemmas.

Lemma 6.1 Suppose that

1. nh5
n log n→ 0 and nhn →∞ as n→∞;

2. K is a symmetric, twice continuously differentiable kernel that vanishes outside

the interval [−1, 1];

3. µ1(x), µ2(x), σ2
1(x), σ2

2(x) and f(x) are twice continuously differentiable every-

where on X

4. E[|Yj − µj(x)|2+p|X = x] ≤ Cj <∞ for some p > 0
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5. f(x) > 0 everywhere on X

Let x′, x′′ be two distinct points in X . Then

√
nhn


µ̂1(x′)− µ1(x′)

µ̂2(x′)− µ2(x′)

µ̂1(x′′)− µ1(x′′)

µ̂2(x′′)− µ2(x′′)

 d→ N(0,Σ),

where Σ is a symmetric 4× 4 matrix with

Σ11 = cKσ
2
1(x′)/f(x′), Σ22 = cKσ

2
2(x′)/f(x′);

Σ33 = cKσ
2
1(x′′)/f(x′′), Σ44 = cKσ

2
2(x′′)/f(x′′);

Σ12 = cK (E[Y1 · Y2|X = x′]− µ1(x′)µ2(x′)) /f(x′);

Σ13 = Σ14 = Σ23 = 0;

Σ34 = cK (E[Y1 · Y2|X = x′′]− µ1(x′′)µ2(x′′)) /f(x′′).

Finally, if K is a third order kernel, then we can obtain the above asymptotic result

under nh7
n → λ2 ≥ 0 and nh5

n →∞ as n→∞.

Proof: To prove joint asymptotic normality, I will employ the Cramér-Wold device.

Therefore, let t = (t1, t2, t3, t4) be an arbitrary vector. I will show that random variable

ξn =t1(µ̂1(x′)− µ1(x′)) + t2(µ̂2(x′)− µ2(x′))

+ t3(µ̂1(x′′)− µ1(x′′)) + t4(µ̂2(x′′)− µ2(x′′)) (6.1)

is asymptotically normally distributed with zero mean.

Following Härdle (1992), for a fixed x define r̂j(x) = µ̂j(x)f̂(x). It can be written

as r̂j(x) = n−1
n∑
i=1

YjiKhn(x−Xi). For any x, we have

(µ̂j(x)− µj(x))− r̂j(x)− µj(x)f̂(x)

f(x)
= op

(
(nhn)−1/2

)
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Define random variable

ζn =t1
r̂1(x′)− µ1(x′)f̂ ′(x)

f(x′)
+ t2

r̂2(x′′)− µ2(x′′)f̂(x′)

f(x′)

+ t3
r̂1(x′′)− µ1(x′′)f̂(x′′)

f(x′′)
+ t4

r̂2(x′′)− µ2(x′′)f̂(x′′)

f(x′′)
(6.2)

Then |(nhn)1/2(ξn − ζn)| = op(1).

For each x and j ∈ J have the following expression for
r̂j(x)−µj(x)f̂(x)

f(x)
:

r̂j(x)− µj(x)f̂(x)

f(x)
=

1

f(x)

1

n

n∑
i=1

Khn(x−Xi)(Yji − µj(x))

For each x ∈ {x′, x′′} and j ∈ J , the bias E
(
r̂j(x)−µj(x)f̂(x)

f(x)

)
= O(h2

n), so that

E((nhn)1/2ζn) = O(nh5
n). Therefore, E((nhn)1/2ζn) = o(1) by condition (1) of the

lemma. Condition (4) of the lemma ensures that Lindeberg condition is satisfied for the

triangular array {(nhn)1/2ζn}, which allows to apply Liapunov’s central limit theorem

to {(nhn)1/2ζn}. This implies, together with zero asymptotic bias of {(nhn)1/2ζn}, that

(nhn)1/2ξn
d→ N(0, σξ(t)) for any vector t. Thus, the Cramér-Wold device warrants joint

normal distribution of random vector (nhn)1/2(µ̂1(x′)−µ1(x′), µ̂2(x′)−µ2(x′), µ̂1(x′′)−
µ1(x′′), µ̂2(x′′)− µ2(x′′)). It only remains to derive the asymptotic variance-covariance

matrix. I will do this only for Σ12, since the proof for any other element of matrix Σ is

similar.

Given joint asymptotic normality, Σ12 is equal to

Σ12 = lim
n→∞

nhnE [(µ̂1(x′)− µ1(x′))(µ̂2(x′)− µ2(x′))]

= lim
n→∞

nhn
f(x′)2

(
E
[ 1

n

n∑
i=1

Khn(x′ −Xi)(Y1i − µ(x′))×

× 1

n

n∑
i=1

Khn(x′ −Xi)(Y2i − µ(x′))
]

+ o
(
(nh)−1

) )
(6.3)
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Finally,

lim
n→∞

1

nhn
E

[
n∑
i=1

K

(
x′ −Xi

hn

)
(Y1i − µ(x′))

n∑
i=1

K

(
x′ −Xi

hn

)
(Y2i − µ(x′))

]
= cKf(x′) [E(Y1Y2|X = x′)− µ1(x′)µ2(x′)]

The last statement of the lemma follows from the expression of the bias for the higher

order kernels. This concludes the proof of the lemma. 2

Next lemma shows consistency and asymptotic normality of kernel estimator of a

unique maximum and provides a simplified version of the proof in Ziegler (2000), since

here we are not interested in asymptotic normality of the estimator of the location of

the maximum. This allows to relax assumptions about the choice of bandwidth. Here

for the ease of the presentation I omit index j in µj, σj and xj0.

Lemma 6.2 Let the equivalent of conditions (A1)-(A3), (R1)-(R3) and (UM1)-(UM3)

hold for i.i.d. sample {(Yi, Xi), i = 1, . . . , n} and µ(x) = E(Y |X = x). Let x0 =

arg maxµ(x) and x̂0 = arg max µ̂(x). Suppose that

1. nh7 → λ2 ≥ 0 and nh5 →∞ as n→∞;

2. K is a symmetric, twice continuously differentiable third order kernel that vanishes

outside the interval [−1, 1].

Then √
nh(µ̂(x̂0)− µ(x0))

d→ N(0, ω)

where ω = cK(E(Y 2|X = x0)− µ2(x0))/f(x0).

Proof: We can write

µ̂(x̂0)− µ(x0) = (µ̂(x̂0)− µ̂(x0)) + (µ̂(x0)− µ(x0))

Lemma 6.1 implies that under our assumptions, (nh)1/2(µ̂(x0) − µ(x0))
d→ N(0, ω). It

remains to show that (nh)1/2(µ̂(x̂0)− µ̂(x0)) = op(1).

Since X is compact and µ(·) is continuous on X , then by Heine-Cantor theorem

µ(·) is also uniformly continuous on X . Together with the assumptions of the lemma
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it implies is uniform consistency of kernel estimator µ̂(x) on X (see Bierens, 1987).

Therefore

sup
x∈X
|µ̂(x)− µ(x)| p→ 0 as n→∞

This in turn implies that ‖x̂0 − x0‖
p→ 0. So, x̂0 is a consistent estimator for x0.

By Taylor series expansion of µ̂(x0) around x = x̂0 we have

µ̂(x̂0)− µ̂(x0) =
∂µ̂(x̂0)

∂x
(x0 − x̂0) +Op(‖x0 − x̂0‖2),

where the last term follows from the fact that Hessian of µ̂(x0) is bounded with prob-

ability 1, since as nh5 → ∞ the second derivative of µ̂(x) evaluated at x = x0 is a

consistent estimator of the second derivative of µ(x) evaluated at x = x0. By the con-

struction of x̂0, we have ∂µ̂(x̂0)
∂x

= 0, so that µ̂(x̂0)−µ̂(x0) = Op(‖x0−x̂0‖2). Therefore, in

order to evaluate the term (nh)1/2(µ̂(x̂0)− µ̂(x0)) we need to find a rate of convergence

of x̂0.

Exact Taylor series expansion of first order conditions for x̂0 around x = x0 gives us

0 =
∂µ̂(xn)

∂x
=
∂µ̂(x0)

∂x
+
∂2µ̂(x̃)

∂x∂x′
(x0 − xn),

where x̃ lies between x0 and x̂0 and therefore ‖x̃−x0‖ = op(1). Provided that nh5 →∞,

we have
∂2µ̂(x0)

∂x∂x′
− ∂2µ(x0)

∂x∂x′
= op(1)

Continuity of the second derivative of µ(·) in the neighborhood of x0 (assumption

(UM2)) implies that also
∂2µ̂(x̃)

∂x∂x′
− ∂2µ(x0)

∂x∂x′
= op(1)

By assumption (UM2), ∂2µ(x0)
∂x∂x′

is negative definite, therefore its inverse exists and we

can write

(x̂0 − x0) =

([
∂2µ(x0)

∂x∂x′

]−1

+ op(1)

)
∂µ̂(x0)

∂x

Since nh3 → 0, then ∂µ̂(x0)
∂x

is a consistent estimator of ∂µ(x0)
∂x

. Moreover, since

nh7 → λ2, then ‖∂µ̂(x0)
∂x
− ∂µ(x0)

∂x
‖ = Op ((nh3)−1). By definition, x0 is the argmax of
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µ(x) and it belongs to the interior of X , so by assumption (UM3) we have

∂µ(x0)

∂x
= 0 (6.4)

This implies that ‖x̂0 − x0‖ = Op ((nh3)−1). Therefore, (nh)1/2(µ̂(x̂0) − µ̂(x0)) =

Op

(
(nh)1/2

n2h6

)
= Op(n

−3/2h−11/2) = op(1) since nh5 → ∞. This completes the proof of

the lemma. 2

Theorem 3.2 immediately follows from Lemmas 6.1 and 6.2 and the fact that K is

a third order kernel. 2

Lemma 6.1 also provides a consistent estimator of variance-covariance matrix Σ(θ).

Lemma 6.3 (Estimator of Σ(θ)) For any j, l ∈ {1, 2},
(

Σ̂(θ)
)
jl

given by

(
Σ̂(θ)

)
jl

=
nh

f̂(x̂j0)f̂(x̂l0)

( 1

n

n∑
i=1

Kh(x̂
j
0 −Xi)(mj(Zi, θ)− Ên[mj(Zi, θ)|X = x̂j0]

)
×

×
( 1

n

n∑
i=1

Kh(x̂
l
0 −Xi)(ml(Zi, θ)− Ên[ml(Zi, θ)|X = x̂l0])

)
is a consistent estimator of (Σ(θ))jl.

Proof of Theorem 3.4. We need to show that Gr,n(θ) and T̃n(θ) have the same lim-

iting distribution if θ belongs to the identified set ΘI . Asymptotic distribution of T̃n(θ)

follows from Theorem 3.3, so it remains to show that Gr,n(θ) converges in distribution to

the same functional of multivariate Gaussian random variable with variance-covariance

matrix Σ(θ). This follows from consistency of estimators Ên[mj(Z, θ)|X = x], x̂j0, Σ̂(θ),

and a law of iterated logarithm for kernel estimator (see Härdle, 1984), which implies

that for any θ ∈ ΘI and our choice of a sequence {τn, n = 1, . . .} we have

P

{
lim
n→∞

1

{
Ên[m(Zi, θ)|Xi = x̂j0(θ)]

sj(x̂
j
0(θ), θ)

≥ −τn

}
= 1

{
E[mj(Zi, θ)|Xi = xj0(θ)] = 0

}}
= 1

This completes the proof. 2

Proof of Theorem 3.5. The second part of the claim follows directly from Theorem

3.1 in Shapiro (2000). It only remains to show that if function f(x, β) satisfies the
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conditions of Theorem 3.5 and
√
n(β̂n−β)

d→ N(0,Σβ), then stochastic process Zn(x) =
√
n(f(x, β̂) − f(x, β)) can be approximated by a stationary Gaussian process Z∞(x)

with continuous sample paths. For a fixed x, Delta method implies that

√
n(f(x, β̂)− f(x, β)) =

∂f(x, b)

∂b

∣∣∣
b=β

N(0,Σβ) + op(1) (6.5)

Define Z∞(x) = ∂f(x,b)
∂b

∣∣∣
b=β

N(0,Σβ). Then Z∞(x) has continuous sample paths since

∂f(x,b)
∂b

∣∣∣
b=β

is continuous on X and sup
x∈X
|Zn(x) − Z∞(x)| = op(1). This concludes the

proof. 2
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Figure 1: Both flat and non-flat constraints. This figure illustrates the case where
E(Y1|x) is linear in x, while E(Y0|x) is nonlinear. Therefore, there exists some θ′ in the
identified set ΘI such that θ′0+θ′1 ·x−E(Y1|x) < 0 and E(Y0|x)−θ′0−θ′1 ·x = 0 for all x ∈
[0, 1]. There also exist some θ′′ in the identified set ΘI such that E(Y0|x)−θ′′0−θ′′1 ·x < 0
and θ′′0 + θ′′1 · x − E(Y1|x) ≤ 0 for any x ∈ [0, 1], and θ′′0 + θ′′1 · x0 − E(Y1|x0) = 0 for
some x0 ∈ [0, 1]. In this case the bootstrap method will give conservative coverage for
θ′′ even though it belongs to the boundary of the identified set.
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Figure 2: Both constrains are non-flat. This figure illustrates the case where both
E(Y1|x) and E(Y0|x) are nonlinear. In this case method based on critical values ob-
tained from the bootstrap approximation gives conservative coverage for any point on
the boundary of the identified set. In contrast, method based on the Gaussian approx-
imation provides the coverage that has asymptotically exact size.
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